Matching Items (25)
151710-Thumbnail Image.png
Description
In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600 km) have surfaces too cold to permit the separation of rock and ice, and should always retain thick (~ 85 km) crusts, despite the partial differentiation of rock and ice inside the body. The retention of a thermally insulating, undifferentiated crust is favorable to the maintenance of subsurface liquid and potentially cryovolcanism on the KBO surface. A potential objection to these models is that the dense crust of rock and ice overlying an ice mantle represents a gravitationally unstable configuration that should overturn by Rayleigh-Taylor (RT) instabilities. I have calculated the growth rate of RT instabilities at the ice-crust interface, including the effect of rock on the viscosity. I have identified a critical ice viscosity for the instability to grow significantly over the age of the solar system. I have calculated the viscosity as a function of temperature for conditions relevant to marginal instability. I find that RT instabilities on a Charon-sized KBO require temperatures T > 143 K. Including this effect in thermal evolution models of KBOs, I find that the undifferentiated crust on KBOs is thinner than previously calculated, only ~ 50 km. While thinner, this crustal thickness is still significant, representing ~ 25% of the KBO mass, and helps to maintain subsurface liquid throughout most of the KBO's history.
ContributorsRubin, Mark (Author) / Desch, Steven J (Thesis advisor) / Sharp, Thomas (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Arizona State University (Publisher)
Created2013
153474-Thumbnail Image.png
Description
A search for Klong to pi0 nu nubar was performed on the initial Physics data taken by the KOTO collaboration by the 30-GeV proton synchrotron at JPARC, located in Tokai, Japan. The detector used in the experiment is an upgraded version of the E391 detector, KOTO's predecessor experiment performed at

A search for Klong to pi0 nu nubar was performed on the initial Physics data taken by the KOTO collaboration by the 30-GeV proton synchrotron at JPARC, located in Tokai, Japan. The detector used in the experiment is an upgraded version of the E391 detector, KOTO's predecessor experiment performed at KEK. The analysis was performed on 2.49 E+11 ± (0.91%)stat ± (2.50%)syst kaon decays. The analysis uses Klong to 3pi0, Klong to 2pi0, and Klong to 2 gamma; for normalization and Monte Carlo validation. Based on my independent analysis, the single event sensitivity was determined to be 1.31 E-8 ± (1.22%)stat ± (7.12%)syst, comparable with the E391 result. An upper limit of 5.12 E-8 was measured for the Klong to pi0 nu nubar branching ratio at a 90% confidence level.
ContributorsMcFarland, Duncan (Author) / Comfort, Joseph R. (Thesis advisor) / Alarcon, Ricardo O (Committee member) / Dugger, Michael R (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2015
150570-Thumbnail Image.png
Description
Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field

Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field on the pairing dynamics in two-flavor color-superconducting dense quark matter is investigated. A universal form of the gap equation for an arbitrary magnetic field is derived in the weakly coupled regime of QCD at asymptotically high density, using the framework of Schwinger-Dyson equation in the improved rainbow approximation. The results for the gap in two limiting cases, weak and strong magnetic fields, are obtained and discussed. It is shown that the superconducting gap function in the weak magnetic field limit develops a directional dependence in momentum space. This property of the gap parameter is argued to be a consequence of a long-range interaction in QCD.
ContributorsYu, Lang (Author) / Shovkovy, Igor A. (Thesis advisor) / Lunardini, Cecilia (Committee member) / Schmidt, Kevin (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2012
150269-Thumbnail Image.png
Description
There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed

There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed numerical simulations have shown that Rayleigh-Taylor (RT) instabilities arise in the star after the explosion, which leads to the early fragmentation of parts of the ejecta. The clumps thus created are of interest to a variety of topics, one of them being the formation environment of the solar system. There is a high probability that the solar system formed in the vicinity of a massive star that, shortly after its formation, exploded as a core collapse supernova. As argued in this thesis as well as other works, a core collapse supernova generally is a good candidate for chemically enriching the forming solar system with material. As forming proto--planetary systems in general have a high probability of being contaminated with supernova material, a method was developed for detecting tracer elements indicative supernova contamination in proto--planetary systems.The degree of the anisotropy of the supernova explosion can have dramatic effects on the mode of delivery of that material to the solar system, or proto--planetary systems in general. Thus it is of particular interest to be able to predict the structure of the supernova ejecta. Numerical simulations of the explosions of core collapse supernovae were done in 3 dimensions in order to study the formation of structure. It is found that RT instabilities result in clumps in the He- and C+O rich regions in the exploding star that are overdense by 1-2 orders of magnitude. These clumps are potential candidates for enriching the solar system with material. In the course of the further evolution of the supernova remnant, these RT clumps are likely to evolve into ejecta knots of the type observed in the Cassiopeia A supernova remnant.
ContributorsEllinger, Carola I (Author) / Young, Patrick A (Thesis advisor) / Desch, Steven J (Committee member) / Timmes, Francis (Committee member) / Scannapieco, Evan (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2011
153950-Thumbnail Image.png
Description
Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model

Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model physics derived in a cosmological setting - (I) It is shown that primordial gravitational waves left over from inflation carry unique detectable CMB signatures for neutrino masses, axions and any other relativistic species that may have been present. (II) Higgs Inflation, the most popular and compelling inflation model with a higgs boson is studied next and it is shown that quantum effects have so far been incorrectly incorporated. A spurious gauge ambiguity arising from quantum effects enters the canonical prediction for observables in Higgs Inflation that must be addressed. (III) A new novel mechanism for generating the observed baryon asymmetry of the universe via decaying gravitinos is proposed. If the Supersymmetry (SUSY) breaking scale is high, then in the presence of R-parity violation, gravitinos can successfully reproduce the baryon asymmetry and evade all low energy constraints. (IV) The final chapter reports on a new completely general analysis of simplified models used in direct detection of dark matter. This is useful to explore what high energy physics constraints can be obtained from direct detection experiments.
ContributorsSabharwal, Subir (Author) / Krauss, Lawrence M (Thesis advisor) / Vachaspati, Tanmay (Thesis advisor) / Mauskopf, Philip D (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2015
153934-Thumbnail Image.png
Description
The IceCube Neutrino Observatory has provided the first map of the high energy (~0.01 – 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a

The IceCube Neutrino Observatory has provided the first map of the high energy (~0.01 – 1 PeV) sky in neutrinos. Since neutrinos propagate undeflected, their arrival direction is an important identifier for sources of high energy particle acceleration. Reconstructed arrival directions are consistent with an extragalactic origin, with possibly a galactic component, of the neutrino flux. We present a statistical analysis of positional coincidences of the IceCube neutrinos with known astrophysical objects from several catalogs. For the brightest gamma-ray emitting blazars and for Seyfert galaxies, the numbers of coincidences is consistent with the random, or “null”, distribution. Instead, when considering starburst galaxies with the highest flux in gamma-rays and infrared radiation, up to n = 8 coincidences are found, representing an excess over the ~4 predicted for the null distribution. The probability that this excess is realized in the null case, the p-value, is p = 0.042. This value falls to p = 0.003 for a set of gamma-ray detected starburst galaxies and superbubbles in the galactic neighborhood. Therefore, it is possible that these might account for a subset of IceCube neutrinos. The physical plausibility of such correlation is discussed briefly.
ContributorsEmig, Kimberly L (Author) / Windhorst, Roiger (Thesis advisor) / Lunardini, Cecilia (Thesis advisor) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2015
156004-Thumbnail Image.png
Description
Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.
ContributorsMitchell, Julie (Author) / Christensen, Philip R. (Thesis advisor) / Bell Iii, James F (Committee member) / Desch, Steven J (Committee member) / Hartnett, Hilairy E (Committee member) / Robinson, Mark S (Committee member) / Arizona State University (Publisher)
Created2017
157373-Thumbnail Image.png
Description
The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi.

The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi. Results showed that column mass abundances range from 400 - 1000 kg.m2 in an area less than 60 km2 in late winter. Complete sublimation of the seasonal caps may occur later than estimated by large-scale studies and is geographically dependent. Seasonal ice depth estimates suggested variations of up to 1.5 m in depth or 75% in porosity at any one time. Interannual variations in these data appeared to correlate with dust activity in the southern hemisphere. Correlation coefficients were used to investigate the relationship between frost-free surface properties and the evolution of the seasonal ice in this region. Ice on high thermal inertia units was found to disappear before any other ice, likely caused by inhibited deposition during fall. Seasonal ice springtime albedo appeared to be predominantly controlled by orientation, with north-facing slopes undergoing brightening initially in spring, then subliming before south-facing slopes. Overall, the state of seasonal ice is far more complex than globally and regionally averaged studies can identify.

The discovery of cryovolcanic features on Charon and the presence of ammonia hydrates on the surfaces of other medium-sized Kuiper Belt Objects suggests that cryovolcanism may be important to their evolution. A two-dimensional, center-point finite difference, thermal hydraulic model was developed to explore the behavior of cryovolcanic conduits on midsized KBOs. Conduits on a Charon-surrogate were shown to maintain flow through over 200 km of crust and mantle down to radii of R = 0.20 m. Radii higher than this became turbulent due to high viscous dissipation and low thermal conductivity. This model was adapted to explore the emplacement of Kubrik Mons. Steady state flow was achieved with a conduit of radius R = 0.02 m for a source chamber at 2.3 km depth. Effusion rates computed from this estimated a 122 - 163 Myr upper limit formation timescale.
ContributorsMount, Christopher (Author) / Christensen, Philip R. (Thesis advisor) / Desch, Steven J (Committee member) / Bell, James F. (Committee member) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2019
156309-Thumbnail Image.png
Description
The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the

The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the cosmos. This work outlines an alternative method to investigating and identifying the presence of cosmic magnetic fields. This method searches for Faraday Rotation (FR) and specifically uses polarized CMB photons as back-light. I find that current generation CMB experiments may be not sensitive enough to detect FR but next generation experiments should be able to make highly significant detections. Identifying FR with the CMB will provide information on the component of magnetic fields along the line of sight of observation.

The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB.

21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively

Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum.

This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and

cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future

arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging.
ContributorsKolopanis, Matthew John (Author) / Bowman, Judd (Thesis advisor) / Mauskopf, Philip (Thesis advisor) / Lunardini, Cecilia (Committee member) / Chamberlin, Ralph (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2018
156699-Thumbnail Image.png
Description
An exhaustive parameter study involving 133 dynamic crystallization experiments was conducted, to investigate the validity of the planetary embryo bow shock model by testing whether the cooling rates predicted by this model are consistent with the most dominant chondrule texture, porphyritic. Results show that using coarse-grained precursors and heating durations

An exhaustive parameter study involving 133 dynamic crystallization experiments was conducted, to investigate the validity of the planetary embryo bow shock model by testing whether the cooling rates predicted by this model are consistent with the most dominant chondrule texture, porphyritic. Results show that using coarse-grained precursors and heating durations ≤ 5 minutes at peak temperature, porphyritic textures can be reproduced at cooling rates ≤ 600 K/hr, rates consistent with planetary embryo bow shocks. Porphyritic textures were found to be commonly associated with skeletal growth, which compares favorably to features in natural chondrules from Queen Alexandra Range 97008 analyzed, which show similar skeletal features. It is concluded that the experimentally reproduced porphyritic textures are consistent with those of natural chondrules. This work shows heating duration is a major determinant of chondrule texture and the work further constrains this parameter by measuring the rate of chemical dissolution of relict grains. The results provide a robust, independent constraint that porphyritic chondrules were heated at their peak temperatures for ≤ 10 minutes. This is also consistent with heating by bow shocks. The planetary embryo bow shock model therefore remains a viable chondrule mechanism for the formation of the vast majority of chondrules, and the results presented here therefore strongly suggest that large planetary embryos were present and on eccentric orbits during the first few million years of the Solar System’s history.
ContributorsPerez, Alexandra Marie (Author) / Desch, Steven J (Thesis advisor) / Till, Christy B. (Committee member) / Schrader, Devin L (Committee member) / Arizona State University (Publisher)
Created2018