Matching Items (16)

141502-Thumbnail Image.png

Astrobiological Stoichiometry

Description

Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the “Stellar Stoichiometry” Workshop Without Walls

Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the “Stellar Stoichiometry” Workshop Without Walls hosted at Arizona State University April 11–12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors. The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ∼2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.

Contributors

Agent

Created

Date Created
  • 2014-07-01

132747-Thumbnail Image.png

Characterizing Diurnal Density and Temperature Variations in the Martian Atmosphere Using Data/Model Comparisons

Description

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8.

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature profiles were also plotted for the three deep dip campaigns, using NGIMS data and MGITM output. MGITM was also used as a tool to uncover potential heat balance terms needed to reproduce the mean density and temperature profiles measured by NGIMS.

This method of using NGIMS data as a validation tool for MGITM simulations has been tested previously using dayside data from deep dip campaigns 2 and 8. In those cases, MGITM was able to accurately reproduce the measured density and temperature profiles; however, in the deep dip 5 and 6 campaigns, the results are not quite the same, due to the highly variable nature of the nightside thermosphere. MGITM was able to fairly accurately reproduce the density and temperature profiles for deep dip 5, but the deep dip 6 model output showed unexpected significant variation. The deep dip 6 results reveal possible changes to be made to MGITM to more accurately reflect the observed structure of the nighttime thermosphere. In particular, upgrading the model to incorporate a suitable gravity wave parameterization should better capture the role of global winds in maintaining the nighttime thermospheric structure.

This project reveals that there still exist many unknowns about the structure and dynamics of the night side of the Martian atmosphere, as well as significant diurnal variations in density. Further study is needed to uncover these unknowns and their role in atmospheric mass loss.

Contributors

Created

Date Created
  • 2019-05

Self-Compression of Ceres-like Bodies Composed of Hydrated Silicates

Description

We model the self-compression of homogeneous, undifferentiated, Ceres-like bodies composed of various minerals and mineral-composites: antigorite, brucite, dolomite, lizardite and magnesite, plus mixtures which were the above minerals mixed with

We model the self-compression of homogeneous, undifferentiated, Ceres-like bodies composed of various minerals and mineral-composites: antigorite, brucite, dolomite, lizardite and magnesite, plus mixtures which were the above minerals mixed with ice Ih. All of the modeled clay/ice bodies had a final radius within 1% of RCeres, an average final density of ~2083 kg m-3 and central pressures of ~133 MPa. The smallest radius was from magnesite, which had a final compressed radius of ~0.88 RCeres, central pressure of ~212 MPa and final density of ~2955 kg m-3. The most significant change in radius was due to the zero-pressure density as the highest densities created the highest force of gravity and produced the smallest radii, yet zero-pressure densities that matched Ceres produced 0.99 RCeres bodies. It was found that the addition of ice, anywhere from 9.1-19.1%, did not affect the body a measurable amount as the inclusion of ice resulted in a lower density creating a lower force of gravity, decreased central pressure and less overall compression. Models that closely resembled Ceres had internal pressures of 133 MPa, which is not enough pressure to induce pore collapse or produce drastic changes due to K and K'. Porosity and the addition of ice in Ceres-like bodies is possible and cannot be ignored when using more complicated modeling techniques. Each mineral and mineral-composite produced unique overall results which allowed us to compare each mineral to Ceres, understand how it has compressed over time and how objects of such a size are affected by compression. Due to the small size, low force of gravity and high bulk moduli of the given minerals, Ceres-like bodies do not compress a considerable amount if they are in fact composed of hydrated silicates.

Contributors

Agent

Created

Date Created
  • 2015-12

129363-Thumbnail Image.png

Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects

Description

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf planet-class Kuiper belt objects (KBOs). We first review the likely spatial and temporal extent of subsurface liquid, proposed mechanisms to overcome the negative buoyancy of liquid water in ice, and the volatile inventory of KBOs. We then present a new geochemical equilibrium model for volatile exsolution and its ability to drive upward crack propagation. This novel approach bridges geophysics and geochemistry, and extends geochemical modeling to the seldom-explored realm of liquid water at subzero temperatures. We show that carbon monoxide (CO) is a key volatile for gas-driven fluid ascent; whereas CO[subscript 2] and sulfur gases only play a minor role. N[subscript 2], CH[subscript 4], and H[subscript 2] exsolution may also drive explosive cryovolcanism if hydrothermal activity produces these species in large amounts (a few percent with respect to water). Another important control on crack propagation is the internal structure: a hydrated core makes explosive cryovolcanism easier, but an undifferentiated crust does not. We briefly discuss other controls on ascent such as fluid freezing on crack walls, and outline theoretical advances necessary to better understand cryovolcanic processes. Finally, we make testable predictions for the 2015 New Horizons flyby of the Pluto-Charon system.

Contributors

Agent

Created

Date Created
  • 2015-01-15

129371-Thumbnail Image.png

EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

Description

We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show

We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (~3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H[subscript 2]. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H[subscript 2], He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (lesssim 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot & Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions [< over ~]30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot & Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ~0.1 M [subscript ⊕] of water vapor in the outer solar nebula and protoplanetary disks in H II regions.

Contributors

Agent

Created

Date Created
  • 2015-01-01

151756-Thumbnail Image.png

Morphological perspectives on galaxy evolution since z̃1.5

Description

Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the

Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d<63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be ``red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5-10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35<1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.

Contributors

Agent

Created

Date Created
  • 2013

152054-Thumbnail Image.png

Trans-Neptunian and exosolar satellites and dust: dynamics and surface effects

Description

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can

Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for giant planet satellites. In addition, impacts of interplanetary dust particles on the small satellites of the Pluto system can eject into the system significant amounts of secondary intra-satellite dust. This dust is primarily swept up by Pluto and Charon, and could explain the observed albedo features on Pluto's surface. In addition to Pluto, a large fraction of trans-neptunian objects (TNOs) are binary or multiple systems. The mutual orbits of these TNO binaries can range from very wide (periods of several years) to near-contact systems (less than a day period). No single formation mechanism can explain this distribution. However, if the systems generally formed wide, a combination of solar and body tides (commonly called Kozai Cycles-Tidal Friction, KCTF) can cause most systems to tighten sufficiently to explain the observed distributions. This KCTF process can also be used to describe the orbital evolution of a terrestrial-class exoplanet after being captured as a satellite of a habitable-zone giant exoplanet. The resulting exomoon would be both potentially habitable and potenially detectable in the full Kepler data set.

Contributors

Agent

Created

Date Created
  • 2013

158065-Thumbnail Image.png

The Mineralogy and Chemical Evolution of the Earth’s Deep Mantle

Description

The mineralogy of the deep mantle is one of the key factors for the chemical evolution of the Earth. The constituent minerals of the mantle rock control the physical properties

The mineralogy of the deep mantle is one of the key factors for the chemical evolution of the Earth. The constituent minerals of the mantle rock control the physical properties of the mantle, which have significant impacts on the large-scale processes occurring in the Earth's interior. In my PhD research, I adopted experimental approaches to investigate the mineralogy and the physical properties of the Earth's materials in the deep mantle by using the diamond anvil cells (DACs) combined with in-situ X-ray diffraction techniques.

First, I found that Ca-bearing bridgmanite can be stable in the deeper part of the Earth's lower mantle where temperature is sufficiently high. The dissolution of calcium into bridgmanite can change the physical properties of the mantle, such as compressibility and viscosity. This study suggests a new mineralogical model for the lower mantle, which is composed of the two layers depending on whether calcium dissolves in bridgmanite or forms CaSiO3 perovskite as a separate phase.

Second, I investigated the mineralogy and density of the subducting materials in the Archean at the P-T conditions near 670 km-depth. The experiments suggest that the major phases of Archean volcanic crust is majoritic garnet and ringwoodite in the P-T conditions of the deep transition zone, which become bridgmanite with increasing pressure. The density model showed that Archean volcanic crust would have been denser than the surrounding mantle, promoting sinking into the lower mantle regardless of the style of the transportation in the Archean.

Lastly, I further investigated the mineralogies and densities of the ancient volcanic crusts for the Archean and Proterozoic at the P-T conditions of the lower mantle. The experiments suggest that the mineralogy of the ancient volcanic crusts is composed mostly of bridgmanite, which is systemically denser than the surrounding lower mantle. This implies that the ancient volcanic crusts would have accumulated at the base of the mantle because of their large density and thickness. Therefore, the distinctive chemistry of the ancient volcanic crusts from the surrounding mantle would have given a rise to the chemical heterogeneities in the region for billions of years.

Contributors

Agent

Created

Date Created
  • 2020

156961-Thumbnail Image.png

ExoPlex: a new Python library for detailed modeling of rocky exoplanet internal structure and mineralogy

Description

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing rocky planet interiors is lacking. There is no doubt that a planet’s interior plays a key role in determining surface conditions including atmosphere composition and land area. Comparing data with diagrams of mass vs. radius for terrestrial planets provides only a first-order estimate of the internal structure and composition of planets [e.g. Seager et al 2007]. This thesis will present a new Python library, ExoPlex, which has routines to create a forward model of rocky exoplanets between 0.1 and 5 Earth masses. The ExoPlex code offers users the ability to model planets of arbitrary composition of Fe-Si-Mg-Al-Ca-O in addition to a water layer. This is achieved by modeling rocky planets after the earth and other known terrestrial planets. The three distinct layers which make up the Earth's internal structure are: core, mantle, and water. Terrestrial planet cores will be dominated by iron however, like earth, there may be some quantity of light element inclusion which can serve to enhance expected core volumes. In ExoPlex, these light element inclusions are S-Si-O and are included as iron-alloys. Mantles will have a more diverse mineralogy than planet cores. Unlike most other rocky planet models, ExoPlex remains unbiased in its treatment of the mantle in terms of composition. Si-Mg-Al-Ca oxide components are combined by predicting the mantle mineralogy using a Gibbs free energy minimization software package called Perple\_X [Connolly 2009]. By allowing an arbitrary composition, ExoPlex can uniquely model planets using their host star’s composition as an indicator of planet composition. This is a proven technique [Dorn et al 2015] which has not yet been widely utilized, possibly due to the lack of availability of easy to use software. I present a model sensitivity analysis to indicate the most important parameters to constrain in future observing missions. ExoPlex is currently available on PyPI so it may be installed using pip or conda on Mac OS or Linux based operating systems. It requires a specific scripting environment which is explained in the documentation currently stored on the ExoPlex GitHub page.

Contributors

Agent

Created

Date Created
  • 2018

155766-Thumbnail Image.png

The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

Description

I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially

I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M_sol at scaled metallicity values of 0.1-1.5 Z_sol and specific elemental abundance ratio values of 0.44-2.28 O/Fe_sol, 0.58-1.72 C/Fe_sol, 0.54-1.84 Mg/Fe_sol, and 0.5-2.0 Ne/Fe_sol. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M_sol (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience.

In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.

Contributors

Agent

Created

Date Created
  • 2017