Matching Items (168)
157330-Thumbnail Image.png
Description
Development throughout the course of history has traditionally resulted in the demise of biodiversity. As humans strive to develop their daily livelihoods, it is often at the expense of nearby wildlife and the environment. Conservation non-governmental organizations (NGOs), among other actors in the global agenda, have blossomed in the past

Development throughout the course of history has traditionally resulted in the demise of biodiversity. As humans strive to develop their daily livelihoods, it is often at the expense of nearby wildlife and the environment. Conservation non-governmental organizations (NGOs), among other actors in the global agenda, have blossomed in the past century with the realization that there is an immediate need for conservation action. Unlike government agencies, conservation NGOs have an independent, potentially more objective outlook on procedures and policies that would benefit certain regions or certain species the most. They often have national and international government support, in addition to the credibility and influencing power to sway policy decisions and participate in international agendas. The key to their success lies in the ability to balance conservation efforts with socioeconomic development efforts. One cannot occur without the other, but they must work in coordination. This study looks at the example of African Great Apes. Eight ape-focused NGOs and three unique case studies will be examined in order to describe the impact that NGOs have. Most of these NGOs have been able to build the capacity from an initial conservation agenda, to incorporating socioeconomic factors that benefit the development of local communities in addition to the apes and habitat they set out to influence. This being the case, initiatives by conservation NGOs could be the key to a sustainable future in which humans and biodiversity coexist harmoniously.
ContributorsPrickett, Laura (Author) / Parmentier, Mary Jane (Thesis advisor) / Zachary, Gregg (Committee member) / Gerber, Leah (Committee member) / Arizona State University (Publisher)
Created2019
133353-Thumbnail Image.png
Description
This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University of Colorado Boulder, is an on-chip spectrometer designed with a multiplexed readout with multiple KIDs that is set up for

This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University of Colorado Boulder, is an on-chip spectrometer designed with a multiplexed readout with multiple KIDs that is set up for a broadband transmission of these measurements. It is useful for detecting radiation in the mm and sub mm wavelengths which is significant since absorption and reemission of photons by dust causes radiation from distant objects to reach us in infrared and far-infrared bands. In preparation for testing, our team installed stages designed previously by Paul Abers and his group into our cryostat and designed and installed other parts necessary for the cryostat to be able to test devices on the 250 mK stage. This work included the design and construction of additional parts, a new setup for the wiring in the cryostat, the assembly, testing, and installation of several stainless steel coaxial cables for the measurements through the devices, and other cryogenic and low pressure considerations. The SuperSpec KID was successfully tested on this 250 mK stage thus confirming that the new setup is functional. Our results are in agreement with existing models which suggest that the breaking of cooper pairs in the detector's superconductor which occurs in response to temperature, optical load, and readout power will decrease the resonant frequencies. A negative linear relationship in our results appears, as expected, since the parameters are varied only slightly so that a linear approximation is appropriate. We compared the rate at which the resonant frequency responded to temperature and found it to be close to the expected value.
ContributorsDiaz, Heriberto Chacon (Author) / Mauskopf, Philip (Thesis director) / McCartney, Martha (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133368-Thumbnail Image.png
Description
Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces

Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces can be used to date stellar events. Computational models of asymmetric supernovae provide opportunities to study the effect of explosion geometry on the SLR yields. We are most interested in the production of \iso{Al}{26}, \iso{Fe}{60}, and \iso{Ca}{41}, whose decayed products are found in our own solar system. To study the effect of explosion asymmetries in supernovae, we use TYCHO stellar evolution code, SNSHP smooth particle hydrodynamics code for 3D explosion simulations, Burn code for nucleosythesis post-processing, and Python code written to analyze the output of the post-processing code.
ContributorsJohnson, Charlotte (Author) / Young, Patrick (Thesis director) / Lunardini, Cecilia (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135211-Thumbnail Image.png
Description
We hypothesized that recurrent exposure to a temporal discounting task would habitize participants, so that they become insensitive to framing effects. Temporal discounting is a behavioral trend which describes how people discount the value of a reward dependent on the time until receipt. Participants completed a temporal discounting task weekly

We hypothesized that recurrent exposure to a temporal discounting task would habitize participants, so that they become insensitive to framing effects. Temporal discounting is a behavioral trend which describes how people discount the value of a reward dependent on the time until receipt. Participants completed a temporal discounting task weekly for five weeks, to promote formation of a habitual decision strategy. Concomitant with this, we expected that people would shift their decision process from a deliberate, goal-oriented approach that is sensitive to changes in reward outcomes and environmental context, to a simplified, automatic approach that minimizes cognitive effort. We expected that this shift in decision strategy would be evident in a reduced influence of contextual effects on choice outcomes. We tested this hypothesis by leveraging two framing effects \u2014 the date/delay effect and the decimal effect. Consistent with our hypothesis, we find that the date/delay effect is significant on week 1, shows significant changes in week 1 to week 5, and is no longer significant on week 5. The results for the decimal effects were not significant. We discuss these results with respect to the cognitive processes that underlie temporal discounting and self-control.
ContributorsSt Amand, Jesse Dean (Author) / McClure, Samuel (Thesis director) / Sanabria, Federico (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135378-Thumbnail Image.png
Description
A problem of interest in theoretical physics is the issue of the evaporation of black holes via Hawking radiation subject to a fixed background. We approach this problem by considering an electromagnetic analogue, where we have substituted Hawking radiation with the Schwinger effect. We treat the case of massless QED

A problem of interest in theoretical physics is the issue of the evaporation of black holes via Hawking radiation subject to a fixed background. We approach this problem by considering an electromagnetic analogue, where we have substituted Hawking radiation with the Schwinger effect. We treat the case of massless QED in 1+1 dimensions with the path integral approach to quantum field theory, and discuss the resulting Feynman diagrams from our analysis. The results from this thesis may be useful to find a version of the Schwinger effect that can be solved exactly and perturbatively, as this version may provide insights to the gravitational problem of Hawking radiation.
ContributorsDhumuntarao, Aditya (Author) / Parikh, Maulik (Thesis director) / Davies, Paul C. W. (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135396-Thumbnail Image.png
Description
Popular Culture of today, particularly books and movies have begun to influence the way individ- uals and society as a whole, views specific concepts. In this case, the fairly recent phenomenon of the Sci- ence Fiction Drug Niche has produced significant thought among audiences as to both the benefits and

Popular Culture of today, particularly books and movies have begun to influence the way individ- uals and society as a whole, views specific concepts. In this case, the fairly recent phenomenon of the Sci- ence Fiction Drug Niche has produced significant thought among audiences as to both the benefits and costs of cognitive enhancers in our world. Through the use of both a thorough analysis of modern films and novels on the topic as well as focus groups of the average college students this study analyzes the influence that this niche has had on the perceptions that students have towards the use of such cognitive enhancements. Small groups of students were shown the same film: Limitless, and discussion after the film displayed the students thoughts and attitudes towards the ideas shown in the film. Limitless itself falls into this Science Fiction drug niche and discusses both benefits and harms of chemical cognitive enhancement. The study indicates that audiences have thought not only about the issues that may arise with the presence of cognitive enhancement in our world but also the possible benefits of this enhancement. The results go even further to preliminarily show that there are common thoughts that arise in such situations. These common ideas that arise show, at least on a very basic level, that the presence of these Science Fiction Drug-inspired works are influencing the way audiences perceive the use of cognitive enhancement as well as influencing what doubts, questions, hopes, and fears arise from these pharmaceuticals. This preliminary study could use further research to ana- lyze the effects of popular culture on perceptions of cognitive enhancement and pharmaceuticals to alter consciousness.
ContributorsSyed, Mariha Batool (Author) / Zachary, Gregg (Thesis director) / Hurlbut, Ben (Committee member) / School of Historical, Philosophical and Religious Studies (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135339-Thumbnail Image.png
Description
Observations of four times ionized iron and nickel (Fe V & Ni V) in the G191-B2B white dwarf spectrum have been used to test for variations in the fine structure constant, α, in the presence of strong gravitational fields. The laboratory wavelengths for these ions were thought to be the

Observations of four times ionized iron and nickel (Fe V & Ni V) in the G191-B2B white dwarf spectrum have been used to test for variations in the fine structure constant, α, in the presence of strong gravitational fields. The laboratory wavelengths for these ions were thought to be the cause of inconsistent conclusions regarding the
variation of α as observed through the white dwarf spectrum. This thesis presents 129 revised Fe V wavelengths (1200 Å to 1600 Å) and 161 revised Ni V wavelengths (1200 Å to 1400 Å) with uncertainties of approximately 3 mÅ. A systematic calibration error
is identified in the previous Ni V wavelengths and is corrected in this work. The evaluation of the fine structure variation is significantly improved with the results
found in this thesis.
ContributorsWard, Jacob Wolfgang (Author) / Treacy, Michael (Thesis director) / Alarcon, Ricardo (Committee member) / Nave, Gillian (Committee member) / Department of Physics (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136792-Thumbnail Image.png
Description
In fan fiction, fans utilize different elements in an original work and incorporate them into their fanfics; elements such as the characters and setting of an original work are frequently used in fan fiction. A different element is investigated: time travel. The physics behind time travel is not yet understood,

In fan fiction, fans utilize different elements in an original work and incorporate them into their fanfics; elements such as the characters and setting of an original work are frequently used in fan fiction. A different element is investigated: time travel. The physics behind time travel is not yet understood, so authors have to create their own time travel physics in their works to account for this lack of understanding. Therefore, for fan authors to incorporate time travel into their fanfic, they must study the time travel physics in the original work the same way that characters from an original work are studied. Three original works and three fanfics are examined: the television show My Little Pony: Friendship is Magic and its fanfic "The Fall and Rise of the Alicorn", the Harry Potter book series and its fanfic "Back to the Time of the Unknown", and the webcomic Homestuck and its fanfic "Like a Bug on a Windshield".
ContributorsClark, Michael Robert (Author) / Ingram-Waters, Mary (Thesis director) / Scott, Suzanne (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2014-05
136613-Thumbnail Image.png
Description
The influence of mix design on the structural properties of FAU-type (faujasite) zeolite was studied. Samples were synthesized in a forced convection oven using various proportions of coal fly ash, sodium hydroxide (NaOH), and sodium chloride (NaCl). Three faujasite varieties, labeled X, P and S, were prepared for each mix

The influence of mix design on the structural properties of FAU-type (faujasite) zeolite was studied. Samples were synthesized in a forced convection oven using various proportions of coal fly ash, sodium hydroxide (NaOH), and sodium chloride (NaCl). Three faujasite varieties, labeled X, P and S, were prepared for each mix design. Samples were characterized using Fourier transform infrared (FT-IR) spectroscopy and thermo-gravimetric analysis (TGA). Mercury intrusion porosimetry (MIP) was used to obtain porosity information on the samples. Mechanical strength testing was performed on solid blocks of the zeolite samples prepared in a mold. It was found that the S variety in mix design (iv) had the most desirable balance of porosity and strength for engineering applications.
Created2015-05
136488-Thumbnail Image.png
Description
We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.
ContributorsBlitz, Samuel Harris (Author) / Richard, Lebed (Thesis director) / Comfort, Joseph (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05