Matching Items (39)
Filtering by

Clear all filters

149137-Thumbnail Image.png
Description

Vegetation changes in the canyon of the Colorado River between Glen Canyon Dam and Lake Mead were studied by comparing photo­ graphs taken prior to the completion of the Glen Canyon Dam in 1963 with those taken afterwards at the same sites. The old photo­ graphs, taken by J. K.

Vegetation changes in the canyon of the Colorado River between Glen Canyon Dam and Lake Mead were studied by comparing photo­ graphs taken prior to the completion of the Glen Canyon Dam in 1963 with those taken afterwards at the same sites. The old photo­ graphs, taken by J. K. Millers, T. H. O'Sullivan, William Bell, F. A. Nims, R. B. Stanton, N. W. Carkhuff, N. H. Darton, L. R. Freeman, E. C. LaRue, and others, document conditions as they were between 1872 and 1963. In general, the older pictures show an absence of riparian plants along the banks of the river. The new photographs of each pair were taken in 1972 through 1976. The most obvious vege­tation change revealed by the photograph comparison is the in­ creased density of many species. Exotic species, such as saltcedar and camelthorn, and native riparian plants, such as sandbar willow, arrowweed, desert broom, and cattail, now form a new riparian com­munity along much of the channel of the Colorado River between Glen Canyon Dam and the Grand Wash Cliffs.

The matched photographs also reveal that changes have occurred in the amount of sand and silt deposited along the banks. The photo­ graphs show that in some areas erosion has been significant since the time of the earlier photograph while at other locations sediment has accumulated on river bars and terraces. Detailed maps are presented showing distribution of 25 plant species. Some of these, such as Russian olive and elm, were unknown along the Grand Canyon reach of the Colorado River before 1976.

Relevant data are presented to show changes in the hydrologic regime since completion of Glen Canyon Dam. Flooding, as expressed by annual maximum stage, has decreased in amplitude, and its sea­ son of occurrence has changed from spring (May-June) to a longer period from April through October. Dam construction has had a moderating influence on several other hydrologic variables. Com­pared to the predam era, discharge through the year now varies within narrow limits, changing little from month to month or season to season; annual maximum discharges are now strikingly uniform, and sediment load has materially decreased. Increases have occurred in some characteristics, however, such as daily variation in river stage and median discharge.

The interaction of decreased flooding, decreased sediment load, and increased riparian plant coverage makes the future of existing river fans, bars, and terraces uncertain. The establishment of a new ecological equilibrium at the bottom of the Grand Canyon may re­ quire many decades.

ContributorsTurner, Raymond M. (Author) / Karpiscak, Martin M. (Author)
Created1980
130318-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement.

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
ContributorsNogly, Przemyslaw (Author) / Panneels, Valerie (Author) / Nelson, Garrett (Author) / Gati, Cornelius (Author) / Kimura, Tetsunari (Author) / Milne, Christopher (Author) / Milathianaki, Despina (Author) / Kubo, Minoru (Author) / Wu, Wenting (Author) / Conrad, Chelsie (Author) / Coe, Jesse (Author) / Bean, Richard (Author) / Zhao, Yun (Author) / Bath, Petra (Author) / Dods, Robert (Author) / Harimoorthy, Rajiv (Author) / Beyerlein, Kenneth R. (Author) / Rheinberger, Jan (Author) / James, Daniel (Author) / Deponte, Daniel (Author) / Li, Chufeng (Author) / Sala, Leonardo (Author) / Williams, Garth J. (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Berntsen, Peter (Author) / Nango, Eriko (Author) / Iwata, So (Author) / Chapman, Henry N. (Author) / Fromme, Petra (Author) / Frank, Matthias (Author) / Abela, Rafael (Author) / Boutet, Sebastien (Author) / Barty, Anton (Author) / White, Thomas A. (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Neutze, Richard (Author) / Schertler, Gebhard (Author) / Standfuss, Jorg (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-08-22
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130322-Thumbnail Image.png
Description

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

ContributorsMunke, Anna (Author) / Andreasson, Jakob (Author) / Aquila, Andrew (Author) / Awel, Salah (Author) / Ayyer, Kartik (Author) / Barty, Anton (Author) / Bean, Richard J. (Author) / Berntsen, Peter (Author) / Bielecki, Johan (Author) / Boutet, Sebastien (Author) / Bucher, Maximilian (Author) / Chapman, Henry N. (Author) / Daurer, Benedikt J. (Author) / DeMirci, Hasan (Author) / Elser, Veit (Author) / Fromme, Petra (Author) / Hajdu, Janos (Author) / Hantke, Max F. (Author) / Higashiura, Akifumi (Author) / Hogue, Brenda (Author) / Hosseinizadeh, Ahmad (Author) / Kim, Yoonhee (Author) / Kirian, Richard (Author) / Reddy, Hemanth K. N. (Author) / Lan, Ti-Yen (Author) / Larsson, Daniel S. D. (Author) / Liu, Haiguang (Author) / Loh, N. Duane (Author) / Maia, Filipe R. N. C. (Author) / Mancuso, Adrian P. (Author) / Muhlig, Kerstin (Author) / Nakagawa, Atsushi (Author) / Nam, Daewoong (Author) / Nelson, Garrett (Author) / Nettelblad, Carl (Author) / Okamoto, Kenta (Author) / Ourmazd, Abbas (Author) / Rose, Max (Author) / van der Schot, Gijs (Author) / Schwander, Peter (Author) / Seibert, M. Marvin (Author) / Sellberg, Jonas A. (Author) / Sierra, Raymond G. (Author) / Song, Changyong (Author) / Svenda, Martin (Author) / Timneanu, Nicusor (Author) / Vartanyants, Ivan A. (Author) / Westphal, Daniel (Author) / Wiedom, Max O. (Author) / Williams, Garth J. (Author) / Xavier, Paulraj Lourdu (Author) / Soon, Chun Hong (Author) / Zook, James (Author) / College of Liberal Arts and Sciences (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Life Sciences (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2016-08-01
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
130274-Thumbnail Image.png
Description
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with

Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
ContributorsReddy, Hemanth K. N. (Author) / Yoon, Chun Hong (Author) / Aquila, Andrew (Author) / Awel, Salah (Author) / Ayyer, Kartik (Author) / Barty, Anton (Author) / Berntsen, Peter (Author) / Bielecki, Johan (Author) / Bobkov, Sergey (Author) / Bucher, Maximilian (Author) / Carini, Gabriella A. (Author) / Carron, Sebastian (Author) / Chapman, Henry (Author) / Daurer, Benedikt (Author) / DeMirci, Hasan (Author) / Ekeberg, Tomas (Author) / Fromme, Petra (Author) / Hajdu, Janos (Author) / Hanke, Max Felix (Author) / Hart, Philip (Author) / Hogue, Brenda (Author) / Hasseinizadeh, Ahmad (Author) / Kim, Yoonhee (Author) / Kirian, Richard (Author) / Kurta, Ruslan P. (Author) / Larsson, Daniel S. D. (Author) / Loh, N. Duane (Author) / Maia, Filipe R. N. C. (Author) / Mancuso, Adrian P. (Author) / Muhlig, Kerstin (Author) / Munke, Anna (Author) / Nam, Daewoong (Author) / Nettelblad, Carl (Author) / Ourmazd, Abbas (Author) / Rose, Max (Author) / Schwander, Peter (Author) / Seibert, Marvin (Author) / Sellberg, Jonas A. (Author) / Song, Changyong (Author) / Spence, John (Author) / Svenda, Martin (Author) / van der Schot, Gijs (Author) / Vartanyants, Ivan A. (Author) / Williams, Garth J. (Author) / Xavier, P. Lourdu (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Department of Physics (Contributor)
Created2017-06-27
130278-Thumbnail Image.png
Description
The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool

The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump–probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo­graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.
ContributorsSpence, John (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-05-10
130279-Thumbnail Image.png
Description
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A[subscript 2A] adenosine receptor (A[subscript 2A]AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A[subscript 2A]AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A[subscript 2A]AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
ContributorsMartin Garcia, Jose Manuel (Author) / Conrad, Chelsie (Author) / Nelson, Garrett (Author) / Stander, Natasha (Author) / Zatsepin, Nadia (Author) / Zook, James (Author) / Zhu, Lan (Author) / Geiger, James (Author) / Chun, Eugene (Author) / Kissick, David (Author) / Hilgart, Mark C. (Author) / Ogata, Craig (Author) / Ishchenko, Andrii (Author) / Nagaratnam, Nirupa (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Subramanian, Ganesh (Author) / Schaffer, Alexander (Author) / James, Daniel (Author) / Ketwala, Gihan (Author) / Venugopalan, Nagarajan (Author) / Xu, Shenglan (Author) / Corcoran, Stephen (Author) / Ferguson, Dale (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Cherezov, Vadim (Author) / Fromme, Petra (Author) / Fischetti, Robert F. (Author) / Liu, Wei (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2017-05-24
130282-Thumbnail Image.png
Description
Crystallographic auto-indexing algorithms provide crystal orientations and unit-cell parameters and assign Miller indices based on the geometric relations between the Bragg peaks observed in diffraction patterns. However, if the Bravais symmetry is higher than the space-group symmetry, there will be multiple indexing options that are geometrically equivalent, and hence many

Crystallographic auto-indexing algorithms provide crystal orientations and unit-cell parameters and assign Miller indices based on the geometric relations between the Bragg peaks observed in diffraction patterns. However, if the Bravais symmetry is higher than the space-group symmetry, there will be multiple indexing options that are geometrically equivalent, and hence many ways to merge diffraction intensities from protein nanocrystals. Structure factor magnitudes from full reflections are required to resolve this ambiguity but only partial reflections are available from each XFEL shot, which must be merged to obtain full reflections from these `stills'. To resolve this chicken-and-egg problem, an expectation maximization algorithm is described that iteratively constructs a model from the intensities recorded in the diffraction patterns as the indexing ambiguity is being resolved. The reconstructed model is then used to guide the resolution of the indexing ambiguity as feedback for the next iteration. Using both simulated and experimental data collected at an X-ray laser for photosystem I in the P63 space group (which supports a merohedral twinning indexing ambiguity), the method is validated.
ContributorsLiu, Haiguang (Author) / Spence, John (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-09-23