Matching Items (22)

134453-Thumbnail Image.png

Determination of Higher Heating Value for Algal Products

Description

Hydrothermal Liquefaction of Algae represents one of many pathways for the sustainable replacement of fossil fuels in transportation. When processing and researching algal biofuel, determination of the higher heating value

Hydrothermal Liquefaction of Algae represents one of many pathways for the sustainable replacement of fossil fuels in transportation. When processing and researching algal biofuel, determination of the higher heating value (HHV) is paramount. Bomb calorimetry represents to current method for direct determination of HHV. When determining HHV’s indirectly, the industry standard is using one of many linear correlations relating elemental composition to HHV. Most of these correlations were developed from coal industry data, meaning that they do not necessarily fit algal product data well. In this study bomb calorimetry data and CHNS/O elemental composition data were collected for Chlorella, Micract, GS 5587.1, Kirchnella, and Gal 87.1 MM8 algae species. This data was added to CHNS/O and HHV values for other algal products in literature, and utilized to test the accuracy of the Dulong, Gumz, Vandralek and Boie correlations for algae products. Several preliminary algae specific correlations were proposed through a linear regression model of the data. Of the 5 samples tested, Kirchnella exhibited the highest HHV (23.2405 ± 0.0216 MJ/kg) and Chlorella exhibited the lowest (20.2055 ± 0.0484 MJ/kg). For both the experimental, and literature CHNS/O vs HHV data, the Vandralek and Boie correlations provided the best approximations in this study. For the totality of the data collected and researched in this study, 6 of 8 proposed correlations outperformed the Vandralek equation for HHV approximation. The most promising proposed correlations incorporated multiple linear regressions for elemental fractions of CHS, CHSO and CHNSO. Being that only 20 distinct algal product samples were regressed to create the proposed correlations, more data should be incorporated before publication of a final correlation. This study should serve as a starting point for the compilation of an exhaustive database for algal product assay and HHV data.

Contributors

Agent

Created

Date Created
  • 2017-05

134356-Thumbnail Image.png

New insights into the pore development mechanism of layered hydroxides upon thermal activation

Description

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the porosity of the materials, with crucial implications for the performance in many applications. Yet, the mechanisms of pore formation and collapse are poorly understood. Combining an integrated in situ and ex situ characterization approach, here we follow the evolution of porosity changes during the thermal decomposition of LDHs integrating different divalent (Mg, Ni) and trivalent (Al, Ga) metals. Variations in porous properties determined by high-resolution argon sorption are linked to the morphological and compositional changes in the samples by in situ transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, which is facilitated by the synthesis of well crystallized LDHs of large crystal size. The observations are correlated with the phase changes identified by X-ray diffraction, the mass losses evidenced by thermogravimetric analysis, the structural changes determined by infrared and nuclear magnetic resonance spectroscopy, and the pore connectivity analyzed by positron annihilation spectroscopy. The findings show that the multimetallic nature of the LDH governs the size and distribution (geometry, location, and connectivity) of the mesopores developed, which is controlled by the crystallization of the MMO phase, providing key insights for the improved design of porous mixed metal oxides.

Contributors

Agent

Created

Date Created
  • 2017-05

133605-Thumbnail Image.png

Nanostructured Faujasite Zeolites for Carbon Dioxide Adsorption: Adsorption Equilibrium and Dynamics Modeling

Description

Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s grou

Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy (SEM) and the physisorption properties were determined using ASAP 2020. ASAP 2020 tests of the nano-zeolite pellets at 77K in a liquid N2 bath determined the BET surface area of 547.1 m2/mol, T-plot micropore volume of 0.2257 cm3/g, and an adsorption average pore width of 5.9 Å. The adsorption isotherm (equilibrium) of CH4, N2, and CO2 were measured at 25ºC. Adsorption isotherm experiments concluded that the linear isotherm was the best fit for N2, and CH4 and the Sips isotherm was a better fit than the Langmuir and Freundlich isotherm for CO2. At 25ºC and 1 atm the zeolite capacity for CO2 is 4.3339 mmol/g, 0.1948 mmol/g for CH4, and 0.3534 mmol/g for N2. The zeolite has a higher CO2 capacity than the conventional NaX zeolite. Breakthrough experiments were performed in a fixed bed 22in, 0.5 in packing height and width at 1 atm and 298 K with nano-zeolite pellets. The gas chromatographer tested and recorded the data every two minutes with a flow rate of 10 cm3/min for N2 and 10 cm3/min CO2. Breakthrough simulations of the zeolite in a fixed bed adsorber column were conducted on MATLAB utilizing varying pressures, flow rates, and fed ratios of various CO2, N2 and CH4. Simulations using ideal adsorbed solution theory (IAST) calculations determined that the selectivity of CO2 in flue gas (15% CO2 + 85% N2) is 571.79 at 1 MPa, significantly higher than commercial zeolites and literature. The nanostructured faujasite zeolite appears to be a very promising adsorbent for CO2/N2 capture from flue gas and the separation of CO2/N2.

Contributors

Agent

Created

Date Created
  • 2018-05

131289-Thumbnail Image.png

Gasification of Municipal Solid Waste for Power Generation

Description

The paper analyzes the growing desire to use waste-to-energy strategies on municipal solid waste (MSW) to generate power. The two waste-to-energy technologies that will be explored are incineration and gasification.

The paper analyzes the growing desire to use waste-to-energy strategies on municipal solid waste (MSW) to generate power. The two waste-to-energy technologies that will be explored are incineration and gasification. The background of these two technologies will be explained because incineration, which has been the pioneering technology for the past century, has come to be rivaled by gasification with its unique purification feature. Following this section, gasification and incineration power generation are studied to conclude which technology is sounder. This study will be conducted via an analysis to find the thermal and exergetic efficiencies and emissions of each. After analyzing the two technologies, both utilizing a vapor cogeneration power system, their efficiencies were found. For the gasification process, the thermal efficiency was 26% and the exergetic efficiency was 59%. The incineration process had a thermal efficiency of 25% and an exergetic efficiency of 55%. Lastly, the emission from the power generation of each method was explored to see which system had a greater impact on the environment. It was found that the primary emissions of these technologies were carbon dioxide and water.

Contributors

Agent

Created

Date Created
  • 2020-05

147875-Thumbnail Image.png

The Evaluation of Algae-Derived Activated Carbon Adsorbents for Direct CO2 Capture from Ambient Air

Description

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to

Temperature swing adsorption is a commonly used gas separation technique, and is being<br/>further researched as a method of carbon capture. Carbon capture is becoming increasingly<br/>important as a potential way to slow global warming. In this study, algae-derived activated<br/>carbon adsorbents were analyzed for their carbon dioxide adsorption effectiveness.<br/>Algae-derived carbon adsorbents were synthesized and then studied for their adsorption<br/>isotherms and adsorption breakthrough behavior. From the generated isotherm plots, it was<br/>determined that the carbonization temperature was not high enough and that more batches of<br/>adsorbent would have to be made to more accurately analyze the adsorptive potential of the<br/>algae-derived carbon adsorbent.

Contributors

Agent

Created

Date Created
  • 2021-05

148012-Thumbnail Image.png

Adsorptive CO2 Capture from Ambient Air by Zeolite

Description

Carbon capture has been a highly sought-after technology for decades because of its<br/>capabilities to restore atmospheric damage done by greenhouse gasses. Thanks to evolving<br/>separation techniques, carbon capture is becoming more

Carbon capture has been a highly sought-after technology for decades because of its<br/>capabilities to restore atmospheric damage done by greenhouse gasses. Thanks to evolving<br/>separation techniques, carbon capture is becoming more efficient with every new discovery in<br/>the field. Currently the biggest problems that carbon capture are facing is the cost of<br/>manufacturing material to aid the process and obtaining ideal conditions for removal of carbon<br/>from air and devising solutions for removal of CO2 in ambient and flue gas conditions.<br/>This Honors Thesis is a continuation of Dr. Shuguang Deng and Dr. Mai Xu’s research<br/>initiative to manufacture and test various zeolitic CO2 removal efficiencies. The goals of this<br/>Honors Thesis are to investigate the adsorption/desorption kinetics and isothermal equilibrium<br/>CO2 capacity of a NaX nanozeolite under ambient air conditions.<br/>What was determined from the following testing was that the zeolite of interest had a<br/>higher adsorption capacity of CO2 at lower temperatures, had a maximum equilibrium quantity<br/>adsorbed of 0.203 mmol/g for CO2 and 0.367 mmol/g of N2, had a maximum breakthrough CO2<br/>capacity of 0.101 mmol of CO2 per gram of zeolite at dry conditions and 298.15K and this<br/>linearly decreased to 0.040 mmol/g at 25% relative humidity.

Contributors

Agent

Created

Date Created
  • 2021-05

133572-Thumbnail Image.png

Simulations of Pressure Swing Adsorption of Methane - Carbon Dioxide System

Description

Separation of carbon dioxide and methane for the upgrade of natural gas through use of pressure swing adsorption could potentially save large amounts of energy from the current, costly process

Separation of carbon dioxide and methane for the upgrade of natural gas through use of pressure swing adsorption could potentially save large amounts of energy from the current, costly process of cryogenic distillation and provides greater cost effectiveness for carbon dioxide capture, and provide larger product flowrates than membrane permeation separation. The purpose of this study is to analyze the effects of varying initial conditions of a MatLab simulation, courtesy of Mai Xu, a graduate student at ASU, designed to use Langmuir isotherms, mass transfer equations, and adsorbent and gas properties to simulate a pressure swing adsorption process with a mixture of methane and carbon dioxide gas feed. The effects that will be varied are the adsorption/desorption time, pressurization/depressurization time, adsorption feed composition, desorption purge composition, adsorption pressure, desorption pressure, adsorption flow rate, and desorption flow rate. The study found that the trends in methane purity and production generally follow the trends predicted by literature and relevant equations, with pressure boundaries being the largest impacting factor. In addition there was a markedly inverse correlation between purity of methane product and the productivity of the system. This trend was only violated in one instance, at very low vacuum pressure during desorption, which could indicate an area that requires further study. Overall, the main areas of improvement in pressure swing adsorption for this system would be improving the selectivity of adsorption of carbon dioxide over methane, which requires improvement and change of the adsorbent, and more extreme vacuum pressures during desorption, both of which will increase methane yield and reduce operating costs.

Contributors

Agent

Created

Date Created
  • 2018-05

132296-Thumbnail Image.png

Production of Biofuel from Algae and Salicornia using Hydrothermal Liquefaction (HTL) Technique

Description

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were conducted using a hydrothermal liquefaction (HTL) technique in the HTL reactor to produce biofuel that can potentially replace fossil fuel usage. Hydrothermal Liquefaction is a method used to convert the biomass into the biofuels. HTL experiments on Algae-Helix and Salicornia at 200°C-350°C and 430psi were performed to investigate the effect of temperature on the biocrude yield of the respective biomass used. The effect of the biomass mixture (co-liquefaction) of Salicornia and algae on the amount of biocrude produced was also explored. The biocrude and biochar (by-product) obtained from the hydrothermal liquefaction process were also analyzed using thermogravimetric analyzer (TGA). The maximum biocrude yield for the algae-helix biomass and for the Salicornia biomass were both obtained at 300°C which were 34.63% and 7.65% respectively. The co-liquefaction of the two biomasses by 50:50 provided a maximum yield of 17.26% at 250°C. The co-liquefaction of different ratios explored at 250°C and 300°C concluded that Salicornia to algae-helix ratio of 20:80 produced the highest yields of 22.70% and 31.97%. These results showed that co-liquefaction of biomass if paired well with the optimizing temperature can produce a high biocrude yield. The TGA profiles investigated have shown that salicornia has higher levels of ash content in comparison with the algae-helix. It was then recommended that for a mixture of algae and Salicornia, large-scale biofuel production should be conducted at 250℃ in a 20:80 salicornia to algae biocrude ratio, since it lowers energy needs. The high biochar content left can be recycled to optimize biomass, and prevent wastage.

Contributors

Agent

Created

Date Created
  • 2019-05

132449-Thumbnail Image.png

Can Biochar Be Converted into Activated Carbon?

Description

In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the

In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the biochar is manufactured into charcoal briquettes and sold on the market for energy usage, however this may not provide the best value for community members who make less than a dollar a day and sell the biochar for as little as 16 cents per kilogram. This thesis seeks to improve the price of biochar and help their livelihoods as well as explore innovative solutions. One way to improve biochar while addressing water security problems is to create activated carbon, which uses its heightened porosity to adsorb contaminants from water or air. Activated carbon is also worth 100x the price of biochar. This thesis evaluates the mass content of biochar produced in Nepal, comparing it to literature values, and performed gravimetric and thermogravimetric analysis, comparing it to Activated Charcoal. Analysis of the biochar system used in Nepal reveals that the byproduct of biochar, biofuels, is highly underutilized. The higher heating value of biochar is 17.95 MJ/kg, which is much lower than other charcoals which burn around 30 MJ/kg. Low volatile content, less than 5% in biochar, provides a smokeless briquette, which is favorable on the market, however low heating value and misutilizations of biofuels in the solution indicate that creating a briquette is not the best use for biochar. Ash content is really high in this biochar, averaging around 12% and it may be due to the feedstock, a composite between Mikania and Lantana, which have 5.23% and 10.77% ash content respectively. This does not necessarily indicate a poor quality biochar, since ash values can vary widely between charcoals. Producing activated charcoal from this biochar is a favored solution; it will increase the price of the biochar, provide water security solutions, and be an appropriate process for this biochar, where heating value and underutilization of biofuel byproducts pose a problem.

Contributors

Agent

Created

Date Created
  • 2019-05

131946-Thumbnail Image.png

Hydrothermal Liquefaction of Micro-Algae to Produce Liquid Biofuels

Description

Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate

Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate effects. The objective of the following research is to increase the yield and efficiency of algal biofuel in order to establish algal-derived fuel as a competitive alternative to predominantly used fossil fuels. Using biofuel commercially will reduce the cost of production and ultimately decrease additional carbon emissions. Experiments were performed using hydrothermal liquefaction (HTL) to determine which catalyst would enhance the algal biocrude oil and result in the highest quality biofuel product, as well as to find the optimal combination of processing temperature and manure co-liquefaction of biomass ratio. For the catalytic upgrading experiments, Micractenium Immerum algae was used in conjunction with pure H2, Pt/C, MO2C, and HZSM-5 catalysts at 350℃ and 400℃, 430 psi, and a 30-minute residence time to investigate the effects of catalyst choice and temperature on the crude oil yield. While all catalysts increased the carbon content of the crude oil, it was found that using HZSM-5 at 350℃ resulted in the greatest overall yield of about 75%. However, the Pt/C catalyst increased the HHV from 34.26 MJ/kg to 43.26 MJ/kg. Cyanidioschyzon merolae (CM) algae and swine manure were utilized in the co-liquefaction experiments, in ratios (algae to swine) of 80:20, 50:50, and 20:80 at temperatures of 300℃ and 330℃. It was found that a ratio of 80:20 at 330℃ produced the highest biocrude oil yield of 29.3%. Although the 80:20 experiments had the greatest biomass conversion and best supported the deacidification of the oil product, the biocrude oil had a HHV of 33.58 MJ/kg, the lowest between the three different ratios. However, all calorific values were relatively close to each other, suggesting that both catalytic upgrading and co-liquefaction can increase the efficiency and economic viability of algal biofuel.

Contributors

Agent

Created

Date Created
  • 2020-05