Matching Items (2,739)
Filtering by

Clear all filters

150404-Thumbnail Image.png
Description
As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium

As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium (Ti) in full-scale wastewater treatment plants, (2) quantify sorption of different ENMs to wastewater biomass in laboratory-scale batch reactors, (3) evaluate the use of a standard, soluble-pollutant sorption test method for quantifying ENM interaction with wastewater biomass, and (4) develop a mechanistic model of a biological wastewater treatment reactor to serve as the basis for modeling nanomaterial fate in WWTPs. Using titanium (Ti) as a model material for the fate of ENMs in WWTPs, Ti concentrations were measured in 10 municipal WWTPs. Ti concentrations in pant influent ranged from 181 to 3000 µg/L, and more than 96% of Ti was removed, with effluent Ti concentrations being less than 25 µg/L. Ti removed from wastewater accumulated in solids at concentrations ranging from 1 to 6 µg Ti/mg solids. Using transmission electron microscopy, spherical titanium oxide nanoparticles with diameters ranging from 4 to 30 nm were found in WWTP effluents, evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems. Batch experiments were conducted to quantify sorption of different ENM types to activated sludge. Percentages of sorption to 400 mg TSS/L biomass ranged from about 10 to 90%, depending on the ENM material and functionalization. Natural organic matter, surfactants, and proteins had a stabilizing effect on most of the ENMs tested. The United States Environmental Protection Agency's standard sorption testing method (OPPTS 835.1110) used for soluble compounds was found to be inapplicable to ENMs, as freeze-dried activated sludge transforms ENMs into stable particles in suspension. In conjunction with experiments, we created a mechanistic model of the microbiological processes in membrane bioreactors to predict MBR, extended and modified this model to predict the fate of soluble micropollutants, and then discussed how the micropollutant fate model could be used to predict the fate of nanomaterials in wastewater treatment plants.
ContributorsKiser, Mehlika Ayla (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Hristovski, Kiril D (Committee member) / Arizona State University (Publisher)
Created2011
150107-Thumbnail Image.png
Description
Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic

Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic model showed that the inhalation of TiO2 nanomaterials caused the highest amount to be absorbed and distributed throughout the body. Smaller nanomaterials (< 5nm) accumulated in the kidneys before clearance. Nanoparticles of 25 nm diameter accumulated in the liver and spleen and were cleared from the body slower than smaller nanomaterials. A digestion method using nitric acid, hydrofluoric acid, and hydrogen peroxide was found to digest organic materials and TiO2 with a recovery of >80%. The samples were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and the method detection limit was 600 ng of Ti. An intratracheal instillation study of TiO2 nanomaterials in rats found anatase TiO2 nanoparticles in the caudal lung lobe of rats 1 day post instillation at a concentration of 1.2 ug/mg dry tissue, the highest deposition rate of any TiO2 nanomaterial. For all TiO2 nanomaterial morphologies the concentrations in the caudal lobes were significantly higher than those in the cranial lobes. In a study of TiO2 concentration in food products, white colored foods or foods with a hard outer shell had higher concentrations of TiO2. Hostess Powdered Donettes were found to have the highest Ti mass per serving with 200 mg Ti. As much as 3.8% of the total TiO2 mass was able to pass through a 0.45 um indicating that some of the TiO2 is likely nanosized. In a study of TiO2 concentrations in personal care products and paints, the concentration of TiO2 was as high as 117 ug/mg in Benjamin Moore white paint and 70 ug/mg in a Neutrogena sunscreen. Greater than 6% of Ti in one sunscreen was able to pass through a 0.45 um filter. The nanosized TiO2 in food products and personal care products may release as much as 16 mg of nanosized TiO2 per individual per day to wastewater.
ContributorsWeir, Alex Alan (Author) / Westerhoff, Paul K (Thesis advisor) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2011
156062-Thumbnail Image.png
Description
Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis

Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis involves In-Situ coating of silver, a known biocide, on the surface of RO membranes. This research was adapted from a protocol developed for coating flat sheet membranes with silver nanoparticles, and scaled up into spiral-wound membranes that are commonly used at the residential scale in point-of-use (POU) filtration systems. Performance analyses of the silver-coated spiral-wound were conducted in a mobile drinking water treatment system fitted with two POU units for comparison. Five month-long analyses were performed, including a deployment of the mobile system. In addition to flux, salt rejection, and other water quality analyses, additional membrane characterization tests were conducted on pristine and silver-coated membranes.

For flat sheet membranes coated with silver, the surface charge remained negative and contact angle remained below 90. Scaling up to spiral-wound RO membrane configuration was successful, with an average silver-loading of 1.93 g-Ag/cm2. Results showed the flux of water through the membrane ranged from 8 to 13 liters/m2*hr. (LMH) operating at 25% recovery during long-term of operation. The flux was initially decreased due to the silver coating, but no statistically significant differences were observed after 14 days of operation (P < 0.05). The salt rejection was also not effected due to the silver coating (P < 0.05). While 98% of silver was released during long-term studies, the silver release from the spiral-wound membrane was consistently below the secondary MCL of 100 ppb established by the EPA, and was consistently below 5 ppb after two hours of operation. Microbial assays in the form of heterotrophic plate counts suggested there was no statistically significant difference in the prevention of biofouling formation due to the silver coating (P < 0.05). In addition to performance tests and membrane characterizations, a remote data acquisition system was configured to remotely monitor performance and water quality parameters in the mobile system.
ContributorsZimmerman, Sean (Author) / Westerhoff, Paul K (Thesis advisor) / Sinha, Shahnawaz (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2017
157473-Thumbnail Image.png
Description
The goal of this research was to study the effect of dilution on ammonium and potassium removal from real hydrolyzed urine. The performance of two natural zeolites, clinoptilolite and chabazite, was studied and compared with the help of batch equilibrium experiments at four dilution levels: 100%, 10%, 1% and 0.1%

The goal of this research was to study the effect of dilution on ammonium and potassium removal from real hydrolyzed urine. The performance of two natural zeolites, clinoptilolite and chabazite, was studied and compared with the help of batch equilibrium experiments at four dilution levels: 100%, 10%, 1% and 0.1% (urine volume/total solution volume). Further, the sorption behavior of other exchangeable ions (sodium, calcium and magnesium) in clinoptilolite and chabazite was studied to improve the understanding of ion exchange stoichiometry. Ammonium and potassium removal were highest at undiluted level in samples treated with clinoptilolite. This is a key finding as it illustrates the benefit of urine source separation. Chabazite treated samples showed highest ammonium and potassium removal at undiluted level at lower doses. At higher doses, potassium removal was similar in undiluted and 10% urine solutions whereas ammonium removal was the highest in 10% urine solutions. In general, chabazite showed higher ammonium and potassium removal than clinoptilolite. The result showed that ion exchange was stoichiometric in solutions with higher urine volumes.
ContributorsRegmi, Urusha (Author) / Boyer, Treavor H (Thesis advisor) / Delgado, Anca G (Committee member) / Hamilton, Kerry (Committee member) / Arizona State University (Publisher)
Created2019
156559-Thumbnail Image.png
Description
This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through

This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through cyclic, reverse β oxidation. This pathway elongates the carboxylate by two carbons. The chain elongation process is overall thermodynamically feasible, and microorganisms gain energy through this process. There have been limited insights into the versatility of chain elongating substrates, understanding the chain elongating microbial community, and its importance in sequestering carbon in the soils.

We used ethanol, methanol, butanol, and hydrogen as electron donors and acetate and propionate as electron acceptors to test the occurrence of microbial chain elongation in four soils with different physicochemical properties and microbial communities. Common chain elongation products were the even numbered chains butyrate, caproate, and butanol, the odd numbered carboxylates valerate and heptanoate, along with molecular hydrogen. At a near neutral pH and mesophilic temperature, we observed a stable and sustained production of longer fatty acids along with hydrogen. Microbial community analysis show phylotypes from families such as Clostridiaceae, Bacillaceae, and Ruminococcaceae in all tested conditions. Through chain elongation, the products formed are less biodegradable. They may undergo transformations and end up as organic carbon, decreasing the greenhouse gas emissions, thus, making this process important to study.
ContributorsJoshi, Sayalee (Author) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2018
156633-Thumbnail Image.png
Description
Nitrate contamination to groundwater and surface water is a serious problem in areas with high agricultural production due to over application of fertilizers. There is a need for alternative technologies to reduce nutrient runoff without compromising yield. Carbon nanoparticles have adsorptive properties and have shown to improve germination and yield

Nitrate contamination to groundwater and surface water is a serious problem in areas with high agricultural production due to over application of fertilizers. There is a need for alternative technologies to reduce nutrient runoff without compromising yield. Carbon nanoparticles have adsorptive properties and have shown to improve germination and yield of a variety of crops. Graphite nanoparticles (CNP) were studied under a variety of different fertilizer conditions to grow lettuce for the three seasons of summer, fall, and winter. The aim of this thesis was to quantify the effect of CNPs on nitrate leaching and lettuce growth. This was accomplished by measuring the lettuce leaf yield, formulating a nutrient balance using the leachate, plant tissue, and soil data, and changing the hydraulic conductivity of the soil to assess the effect on nutrient mobility. summer and fall experiments used Arizona soil with different amounts of nitrogen, phosphorus, and potassium (NPK) fertilizer being applied to the soil with and without CNPs. The winter experiments used three different soil blends of Arizona soil, Arizona soil blended with 30% sand, and Arizona soil blended with 70% sand with a constant fertilizer treatment of 30% NPK with and without CNPs. The results showed that the 70% NPK with CNP treatment was best at reducing the amount of nitrate leached while having little to no compromise in yield. The winter experiments showed that the effectiveness of CNPs in reducing nitrate leaching and enhancing yield, improved with the higher the hydraulic conductivity of the soil.
ContributorsPandorf, Madelyn (Author) / Westerhoff, Paul K (Thesis advisor) / Boyer, Treavor (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2018
156634-Thumbnail Image.png
Description
Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure

Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure an effective integrated bioremediation + ozonation remedial strategy to remove the overall organic carbon. Using a soil column, I conducted batch ozonation experiments for different soils and at different moisture levels. I measured multiple parameters: e.g., total petroleum hydrocarbons (TPH) and dissolved organic carbon (DOC), to build a full understanding of the data that led to the solid conclusions. I first demonstrated the feasibility of using ozone to attack heavy petroleum hydrocarbons in soil settings. I identified the physical and chemical hurdles (e.g., moisture, mass transfer, pH) needed to be overcome to make the integration of chemical oxidation and biodegradation more efficient and defines the mechanisms behind the experimental observations. Next, I completed a total carbon balance, which revealed that multiple components, including soil organic matter (SOM) and non-TPH petroleum, competed for ozone, although TPH was relatively more reactive. Further experiments showed that poor soil mixing and high soil-moisture content hindered mass transfer of ozone to react with the TPH. Finally, I pursued the theme of optimizing the integration of ozonation and biodegradation through a multi-stage strategy. I conducted multi-stages of ozonation and bioremediation for two benchmark soils with distinctly different oils to test if and how much ozonation enhanced biodegradation and vice versa. With pH and moisture optimized for each step, pre-ozonation versus post-ozonation was assessed for TPH removal and mineralization. Multi-cycle treatment was able to achieve the TPH regulatory standard when biodegradation alone could not. Ozonation did not directly enhance the biodegradation rate of TPH; instead, ozone converted TPH into DOC that was biodegraded and mineralized. The major take-home lesson from my studies is that multi-stage ozonation + biodegradation is a useful remediation tool for petroleum contamination in soil.
ContributorsChen, Tengfei (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Delgado, Anca G (Committee member) / Arizona State University (Publisher)
Created2018
156706-Thumbnail Image.png
Description
Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring

Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring NP surface reactivity and identifying surface reaction mechanisms, and (3) understanding the impact of surface adsorption of ions on surface reactivity of NPs in water.

The size detection limit of single particle inductively coupled plasma spectrometry (spICP-MS) was determined for 40 elements, demonstrating the feasibility of spICP-MS to different NP species in water. The K-means Clustering Algorithm was used to process the spICP-MS signals, and achieved precise particle-noise differentiation and quantitative particle size resolution. A dry powder assay based on NP-catalyzed methylene blue (MB) reduction was developed to rapidly and sensitively detect metallic NPs in water by measuring their catalytic reactivity.

Four different wet-chemical-based NP surface reactivity assays were demonstrated: “borohydride reducing methylene blue (BHMB)”, “ferric reducing ability of nanoparticles (FRAN)”, “electron paramagnetic resonance detection of hydroxyl radical (EPR)”, and “UV-illuminated methylene blue degradation (UVMB)”. They gave different reactivity ranking among five NP species, because they targeted for different surface reactivity types (catalytic, redox and photo reactivity) via different reaction mechanisms. Kinetic modeling frameworks on the assay outcomes revealed two surface electron transfer schemes, namely the “sacrificial reducing” and the “electrode discharging”, and separated interfering side reactions from the intended surface reaction.

The application of NPs in chemical mechanical polishing (CMP) was investigated as an industrial case to understand NP surface transformation via adsorbing ions in water. Simulation of wastewater treatment showed CMP NPs were effectively removed (>90%) by lime softening at high pH and high calcium dosage, but 20-40% of them remained in water after biomass adsorption process. III/V ions (InIII, GaIII, and AsIII/V) derived from semiconductor materials showed adsorption potentials to common CMP NPs (SiO2, CeO2 and Al2O3), and a surface complexation model was developed to determine their intrinsic complexation constants for different NP species. The adsorption of AsIII and AsV ions onto CeO2 NPs mitigated the surface reactivity of CeO2 NPs suggested by the FRAN and EPR assays. The impact of the ion adsorption on the surface reactivity of CeO2 NPs was related to the redox state of Ce and As on the surface, but varied with ion species and surface reaction mechanisms.
ContributorsBi, Xiangyu (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Herckes, Pierre (Committee member) / Richert, Ranko (Committee member) / Arizona State University (Publisher)
Created2018
157339-Thumbnail Image.png
Description
Mineral weathering and industrial activities cause elevated concentration of hexavalent chromium (Cr(VI)) in groundwater, and this poses potential health concern (>10 ppb) to southwestern USA. The conversion of Cr(VI) to Cr(III) – a fairly soluble and non-toxic form at typical pH of groundwater is an effective method to control the

Mineral weathering and industrial activities cause elevated concentration of hexavalent chromium (Cr(VI)) in groundwater, and this poses potential health concern (>10 ppb) to southwestern USA. The conversion of Cr(VI) to Cr(III) – a fairly soluble and non-toxic form at typical pH of groundwater is an effective method to control the mobility and carcinogenic effects of Cr(VI). In-situ chemical reduction using SnCl2 was investigated to initiate this redox process using jar testing with buffered ultrapure water and native Arizona groundwater spiked with varying Cr(VI) concentrations. Cr(VI) transformation by SnCl2 is super rapid (<60 seconds) and depends upon the molar dosage of Sn(II) to Cr(VI). Cr(VI) removal improved significantly at higher pH while was independent on Cr(VI) initial concentration and dissolved oxygen (DO) level. Co-existing oxyanions (As and W) competed with Cr(VI) for SnCl2 oxidation and adsorption sites of formed precipitates, thus resulted in lower Cr(VI) removal in the challenge water. SnCl2 reagent grade and commercial grade behaved similarly when freshly prepared, but the reducing strength of the commercial product decreased by 50% over a week after exposing to atmosphere. Equilibrium modeling with Visual MINTEQ suggested redox potential < 400 mV to reach Cr(VI) treatment goal of 10 ppb. Kinetics of Cr(VI) reduction was simulated via the rate expression: r=-k[H+]-0.25[Sn2+]0.5[Cr2O72-]3 with k = 0.146 uM-2.25s-1, which correlated consistently with experimental data under different pH and SnCl2 doses. These results proved SnCl2 reductive treatment is a simple and highly effective method to treat Cr(VI) in groundwater.
ContributorsNguyen, Duong Thanh (Author) / Westerhoff, Paul K (Thesis advisor) / Delgado, Anca G (Committee member) / Sinha, Shahnawaz (Committee member) / Arizona State University (Publisher)
Created2019
156966-Thumbnail Image.png
Description
C.C. Cragin Reservoir’s location in the Coconino National Forest, Arizona makes it prone to wild fire. This study focused on the potential impacts of such a wild fire on the reservoir’s annual thermal stratification cycle impacts and water quality. The annual thermal stratification cycle impacted the reservoir’s water

C.C. Cragin Reservoir’s location in the Coconino National Forest, Arizona makes it prone to wild fire. This study focused on the potential impacts of such a wild fire on the reservoir’s annual thermal stratification cycle impacts and water quality. The annual thermal stratification cycle impacted the reservoir’s water quality by increasing hypolimnion concentrations of magnesium, iron, turbidity, and specific ultraviolet absorbance (SUVA) values, as well as resulting in the hypolimnion having decreased dissolved oxygen concentrations during stratified months. The scarification process did not affect the dissolved organic carbon (DOC) concentrations in the reservoir or the total/dissolved nitrogen and phosphorous concentrations. Some general water quality trends that emerged were that phosphorous was the limiting nutrient, secchi disk depth and chlorophyll a concentration are inversely related, and no metals were found to be in concentrations that would violate an EPA drinking water maximum contaminant level (MCL). A carbon mass model was developed and parameterized using DOC measurements, and then using historic reservoir storage and weather data, the model simulated DOC concentrations in the reservoir following four hypothetical wild fire events. The model simulated varying initial reservoir storage volumes, initial flush volumes, and flush DOC concentrations, resulting in reservoir DOC concentrations varying from 17.41 mg/L to 8.82 mg/L.
ContributorsFlatebo, Theodore (Author) / Westerhoff, Paul K (Thesis advisor) / Fox, Peter (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2018