Matching Items (1,841)
Filtering by

Clear all filters

156403-Thumbnail Image.png
Description
Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET,

Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET, US-06 drive schedules, respectively. These drive schedules have been combined into a custom drive cycle, named the AZ-01 drive schedule, designed to simulate a typical commute in the state of Arizona. The battery cell cycling is conducted at various temperature settings (0, 25, 40, and 50 °C). At 50 °C, under the AZ-01 drive schedule, a severe inflammation was observed in the cells that led to cell failure. Capacity fading under AZ-01 drive schedule at 0 °C per 100 cycles is found to be 2%. At 40 °C, 3% capacity fading is observed per 100 cycles under the AZ-01 drive schedule. Modeling and prediction of discharge rate capability of batteries is done using Electrochemical Impedance Spectroscopy (EIS). High-frequency resistance values (HFR) increased with cycling under the AZ-01 drive schedule at 40 °C and 0 °C. The research goal for this thesis is to provide performance analysis and life cycle data for Li4Ti5O12 (Lithium Titanite) battery cells in simulated Arizona conditions. Future work involves an evaluation of second-life opportunities for cells that have met end-of-life criteria in EV applications.
ContributorsAbdelhay, Reem (Author) / Kannan, Arunachala Mada (Thesis advisor) / Wishart, Jeffrey (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2018
155521-Thumbnail Image.png
Description
This research effort focuses on thermal management system (TMS) design for a high-performance, Plug-in Hybrid Electric Vehicle (PHEV). The thermal performance for various components in an electrified powertrain is investigated using a 3D finite difference model for a complete vehicle system, including inherently temperature-sensitive components. The components include the electric

This research effort focuses on thermal management system (TMS) design for a high-performance, Plug-in Hybrid Electric Vehicle (PHEV). The thermal performance for various components in an electrified powertrain is investigated using a 3D finite difference model for a complete vehicle system, including inherently temperature-sensitive components. The components include the electric motor (EM), power electronics, Energy Storage System (ESS), and Internal Combustion Engine (ICE).

A model-based design approach is utilized, where a combination of experimental work and simulation are integrated. After defining heat sources and heat sinks within the power train system, temporal and spatial boundary conditions were extracted experimentally to facilitate the 3D simulation under different road-load scenarios. Material properties, surface conditions, and environmental factors were defined for the geometrical surface mesh representation of the system. Meanwhile the finite differencing code handles the heat transfer phenomena via conduction and radiation, all convective heat transfer mode within the powertrain are defined using fluid nodes and fluid streams within the powertrain.

Conclusions are drawn through correlating experimental results to the outcome from the thermal model. The outcome from this research effort is a 3D thermal performance predictive tool that can be utilized in order to evaluate the design of advanced thermal management systems (TMSs) for alternative powertrains in early design/concept stages of the development process.

For future work, it is recommended that a full validation of the 3D thermal model be completed. Subsequently, design improvements can be made to the TMS. Some possible improvements include analysis and evaluation of shielding of the catalytic converter, exhaust manifold, and power electronics, as well as substituting for material with better thermal performance in other temperature-sensitive components, where applicable. The result of this improvement in design would be achieving an effective TMS for a high-performance PHEV.
ContributorsCarroll, Joshua Kurtis (Author) / Mayyas, Abdel Ra'Ouf (Thesis advisor) / Wishart, Jeffrey (Committee member) / Contes, James (Committee member) / Arizona State University (Publisher)
Created2017