Matching Items (1,847)
Filtering by

Clear all filters

152942-Thumbnail Image.png
Description
Boron concentrations and isotopic composition of phlogopite mica, amphibole, and selected coexisting anhydrous phases in mantle-derived xenoliths from the Kaapvaal Craton were measured by secondary ion mass spectrometry in an effort to better understand the B isotope geochemistry of the subcontinental lithospheric mantle (SCLM) and its implications for the global

Boron concentrations and isotopic composition of phlogopite mica, amphibole, and selected coexisting anhydrous phases in mantle-derived xenoliths from the Kaapvaal Craton were measured by secondary ion mass spectrometry in an effort to better understand the B isotope geochemistry of the subcontinental lithospheric mantle (SCLM) and its implications for the global geochemical cycle of B in the mantle. These samples display a wide, and previously unrecognized, range in their boron contents and isotopic compositions reflecting a complex history involving melt depletion and metasomatism by subduction- and plume-derived components, as well as late stage isotopic exchange related to kimberlite emplacements. Micas from ancient lithospheric harzburgite metasomatized by slab-derived fluids suggest extensive B-depletion during subduction, resulting in low-B, isotopically light compositions whereas kimberlite-related metasomatic products and a sample from the 2 Ga Palabora carbonatite have boron isotopic compositions similar to proposed primitive mantle. The results suggest that subduction of oceanic lithosphere plays a limited role in the B geochemistry of the convecting mantle.
ContributorsGuild, Meghan R (Author) / Hervig, Richard L (Thesis advisor) / Bell, David R. (Committee member) / Mcnamara, Allen (Committee member) / Arizona State University (Publisher)
Created2014
150140-Thumbnail Image.png
Description
The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to 1) constrain atmospheric conditions during their time of arrival; 2) provide insights

The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to 1) constrain atmospheric conditions during their time of arrival; 2) provide insights into possible variabilities in meteoroid type sampling between Mars and Earth space environments; 3) aid in our understanding of soil, dust, and sedimentary rock chemistry; 4) assist with the calibration of crater-age dating techniques; and 5) provide witness samples for chemical and mechanical weathering processes. The presence of reduced metallic iron in approximately 88 percent of meteorite falls renders the majority of meteorites particularly sensitive to oxidation by H2O interaction. This makes them excellent markers for H2O occurrence. Several large meteorites have been discovered at Gusev Crater and Meridiani Planum by the Mars Exploration Rovers (MERs). Significant morphologic characteristics interpretable as weathering features in the Meridiani suite of iron meteorites include a 1) large pit lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; 2) differentially eroded kamacite and taenite lamellae on three of the meteorites, providing relative timing through cross-cutting relationships with deposition of 3) an iron oxide-rich dark coating; and 4) regmaglypted surfaces testifying to regions of minimal surface modification; with other regions in the same meteorites exhibiting 5) large-scale, cavernous weathering. Iron meteorites found by Mini-TES at both Meridiani Planum and Gusev Crater have prompted laboratory experiments designed to explore elements of reflectivity, dust cover, and potential oxide coatings on their surfaces in the thermal infrared using analog samples. Results show that dust thickness on an iron substrate need be only one tenth as great as that on a silicate rock to obscure its infrared signal. In addition, a database of thermal emission spectra for 46 meteorites was prepared to aid in the on-going detection and interpretation of these valuable rocks on Mars using Mini-TES instruments on both MER spacecraft. Applications to the asteroidal sciences are also relevant and intended for this database.
ContributorsAshley, James Warren (Author) / Christensen, Philip R. (Thesis advisor) / Sharp, Thomas G (Committee member) / Shock, Everett L (Committee member) / Hervig, Richard L (Committee member) / Zolotov, Mikhail Y (Committee member) / Arizona State University (Publisher)
Created2011
151134-Thumbnail Image.png
Description
Fluorine (F) is a volatile constituent of magmas and hydrous mantle minerals. Compared to other volatile species, F is highly soluble in silicate melts, allowing F to remain in the melt during magma differentiation and rendering F less subject to disturbance during degassing upon magma ascent. Hence, the association between

Fluorine (F) is a volatile constituent of magmas and hydrous mantle minerals. Compared to other volatile species, F is highly soluble in silicate melts, allowing F to remain in the melt during magma differentiation and rendering F less subject to disturbance during degassing upon magma ascent. Hence, the association between fluorine in basalts and fluorine in the mantle source region is more robust than for other volatile species. The ionic radius of F- is similar to that of OH- and O2-, and F may substitute for hydroxyl and oxygen in silicate minerals and melt. Fluorine is also incorporated at trace levels within nominally anhydrous minerals (NAMs) such as olivine, clinopyroxene, and plagioclase. Investigating the geochemical behavior of F in NAMs provides a means to estimate the pre-eruptive F contents of degassed magmas and to better understand the degassing behavior of H. The partition coefficients of F were determined for clinopyroxene, olivine, plagioclase, and hornblende within melts of olivine-minette, augite-minette, basaltic andesite, and latite compositions. The samples analyzed were run products from previously-published phase-equilibria experiments. Fluorine was measured by secondary ion mass spectrometry (SIMS) using an 16O- primary beam and detection of negative secondary ions (19F-, 18O-, 28Si-). SIMS ion intensities are converted to concentrations by analyzing matrix-matched microanalytical reference materials and constructing calibration curves. For robust F calibration standards, five basaltic glasses (termed Fba glasses) were synthesized in-house using a natural tholeiite mixed with variable amounts of CaF2. The Fba glasses were characterized for F content and homogeneity, using both SIMS and electron-probe microanalysis (EPMA), and used as F standards. The partition coefficients for clinopyroxene (0.04-028) and olivine (0.01-0.16) varied with melt composition such that DF (olivine-minette) < DF (augite-minette) < DF (basaltic andesite) < DF (latite). Crystal chemical controls were found to influence the incorporation of F into clinopyroxene, but none were found that affected olivine. Fluorine partitioning was compared with that of OH within clinopyroxenes, and the alumina content of clinopyroxene was shown to be a strong influence on the incorporation of both anions. Fluorine substitution into both olivine and clinopyroxene was found to be strongly controlled by melt viscosity and degree of melt polymerization.
ContributorsGuggino, Steve (Author) / Hervig, Richard L (Thesis advisor) / Donald, Burt M (Committee member) / Amanda, Clarke B (Committee member) / Lynda, Williams B (Committee member) / Stanley, Williams N (Committee member) / Arizona State University (Publisher)
Created2012
156153-Thumbnail Image.png
Description
Explosive mafic (basaltic) volcanism is not easily explained by current eruption models, which predict low energy eruptions from low viscosity magma due to decoupling of volatiles (gases). Sunset Crater volcano provides an example of an alkali basalt magma that produced a highly explosive sub-Plinian eruption. I investigate the possible role

Explosive mafic (basaltic) volcanism is not easily explained by current eruption models, which predict low energy eruptions from low viscosity magma due to decoupling of volatiles (gases). Sunset Crater volcano provides an example of an alkali basalt magma that produced a highly explosive sub-Plinian eruption. I investigate the possible role of magmatic volatiles in the Sunset Crater eruption through study of natural samples of trapped volatiles (melt inclusions) and experiments on mixed-volatile (H2O-CO2) solubility in alkali-rich mafic magmas.

I conducted volatile-saturated experiments in six mafic magma compositions at pressures between 400 MPa and 600 MPa to investigate the influence of alkali elements (sodium and potassium) on volatile solubility. The experiments show that existing volatile solubility models do not accurately describe CO2 solubility at mid-crustal depths. I calculate thermodynamic fits for solubility in each composition and calibrate a general thermodynamic model for application to other mafic magmas. The model shows that the relative percent abundances of sodium, calcium, and potassium have the greatest influence on CO2 solubility in mafic magmas.

I analyzed olivine-hosted melt inclusions (MIs) from Sunset Crater to investigate pre-eruptive volatiles. I compared the early fissure activity to the sub-Plinian eruptive phases. The MIs are similar in major element and volatile composition suggesting a relatively homogeneous magma. The H2O content is relatively low (~1.2 wt%), whereas the dissolved CO2 content is high (~2300 ppm). I explored rehomogenization and Raman spectroscopy to quantify CO2 abundance in MI vapor bubbles. Calculations of post-entrapment bubble growth suggest that some MI bubbles contain excess CO2. This implies that the magma was volatile-saturated and MIs trapped exsolved vapor during their formation. The total volatile contents of MIs, including bubble contents but excluding excess vapor, indicate pre-eruptive magma storage from 10 km to 18 km depth.

The high CO2 abundance found in Sunset Crater MIs allowed the magma to reach volatile-saturation at mid-crustal depths and generate overpressure, driving rapid ascent to produce the explosive eruption. The similarities in MIs and volatiles between the fissure eruption and the sub-Plinian phases indicate that shallow-level processes also likely influenced the final eruptive behavior.
ContributorsAllison, Chelsea Maria (Author) / Clarke, Amanda B (Thesis advisor) / Hervig, Richard L (Committee member) / Roggensack, Kurt (Committee member) / Semken, Steven (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2018
157219-Thumbnail Image.png
Description
Oxygen fugacity (ƒO2) is a thermodynamic variable used to represent the redox state of a material or a system. It is equivalent to the partial pressure of oxygen in a particular environment corrected for the non-ideal behavior of the gas. ƒO2 is often used to indicate the potential for iron

Oxygen fugacity (ƒO2) is a thermodynamic variable used to represent the redox state of a material or a system. It is equivalent to the partial pressure of oxygen in a particular environment corrected for the non-ideal behavior of the gas. ƒO2 is often used to indicate the potential for iron to occur in a more oxidized or reduced state at a particular temperature and pressure in a natural system. Secondary ion mass spectrometry (SIMS) is a powerful analytical instrument that can be used to analyze elemental and isotopic compositional information about microscopic features within solid materials. SIMS analyses of the secondary ion energy distribution of semi-pure metals demonstrate that the energy spectrum of individual mass lines can provide information about alterations in its surface environment.

The application of high-resolution (see Appendix C) energy spectrum calibrations to natural ilmenite led to the investigation of zirconium (90Zr+) and niobium (93Nb+) as potential indicators of sample ƒO2. Energy spectrum measurements were performed on an array of ilmenite crystals from the earth’s upper mantle retrieved from kimberlites and from a reduced meteorite. In all studied materials, variability in the peak shape and width of the energy spectra has been correlated with inferred sample ƒO2. The best descriptor of this relationship is the full-width at half-maximum (FWHM; see Appendix C) of the energy spectra for each sample. It has been estimated that a 1eV change in the FWHM of 93Nb+ energy spectra is roughly equivalent to 1 log unit ƒO2. Simple estimates of precision suggest the FWHM values can be trusted to  1eV and sample ƒO2 can be predicted to ±1 log unit, assuming the temperature of formation is known.

The work of this thesis also explores the applicability of this technique beyond analysis of semi-pure metals and ilmenite crystals from kimberlites. This technique was applied to titanium oxides experimentally formed at known ƒO2 as well as an ilmenite crystal that showed compositional variations across the grain (i.e., core to rim chemical variations). Analyses of titanium oxides formed at known ƒO2 agree with the estimation that 1 eV change in the FWHM of 93Nb+ is equivalent to ~1 log unit ƒO2 (in all cases but one); this is also true for analyses of a natural ilmenite crystal with compositional variations across the grain.
ContributorsDillon, Sarah Marie (Author) / Hervig, Richard L (Thesis advisor) / Shim, Sang-Heon (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2019