Matching Items (730)
157457-Thumbnail Image.png
Description
The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by

The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by a small-scale, 5 degree-of-freedom (DOF) robotic arm that are useful for construction operations, specifically bricklaying. A software framework for the robotic arm with motion and path planning features and different control capabilities has also been developed using the Robot Operating System (ROS).

First, a literature review of bricklaying construction activity and existing robots’ performance is discussed. After describing an overview of the required robot structure, a mathematical model is presented for the 5-DOF robotic arm. A model-based computed torque controller is designed for the nonlinear dynamic robotic arm, taking into consideration the dynamic and kinematic properties of the arm. For sustainable growth of this technology so that it is affordable to the masses, it is important that the energy consumption by the robot is optimized. In this thesis, the trajectory of the robotic arm is optimized using sequential quadratic programming. The results of the energy optimization procedure are also analyzed for different possible trajectories.

A construction testbed setup is simulated in the ROS platform to validate the designed controllers and optimized robot trajectories on different experimental scenarios. A commercially available 5-DOF robotic arm is modeled in the ROS simulators Gazebo and Rviz. The path and motion planning is performed using the Moveit-ROS interface and also implemented on a physical small-scale robotic arm. A Matlab-ROS framework for execution of different controllers on the physical robot is described. Finally, the results of the controller simulation and experiments are discussed in detail.
ContributorsGandhi, Sushrut (Author) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
157430-Thumbnail Image.png
Description
Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force

Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force platform (FDFP),

a light, rigid box immersed in water. This platform, along with a motion capture

system, can be used to characterize the kinematics and dynamics of a basilisk lizard

running on water. This could ultimately lead to robots that can run on water in a

similar manner.
ContributorsSweeney, Andrew Joseph (Author) / Marvi, Hamidreza (Thesis advisor) / Lentink, David (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
156724-Thumbnail Image.png
Description
The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared

The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated.

A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and

safe.

A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.

A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.

The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.

An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
ContributorsJhawar, Vaibhav (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
156788-Thumbnail Image.png
Description
Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in

Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in aerospace structures that require high specific strength and fatigue resistance. However, studying the fundamental crack growth behavior at the micro- and macroscale as a function of loading history is essential to accurately predict the residual fatigue life of components and achieve damage tolerant designs. The issue of mechanical fatigue can be tackled by developing reliable in-situ damage quantification methodologies and by comprehensively understanding fatigue damage mechanisms under a variety of complex loading conditions. Although a multitude of uniaxial fatigue loading studies have been conducted on light-weight metallic materials and composites, many service failures occur from components being subjected to variable amplitude, mixed-mode multiaxial fatigue loadings. In this research, a systematic approach is undertaken to address the issue of fatigue damage evolution in aerospace materials by:

(i) Comprehensive investigation of micro- and macroscale crack growth behavior in aerospace grade Al 7075 T651 alloy under complex biaxial fatigue loading conditions. The effects of variable amplitude biaxial loading on crack growth characteristics such as crack acceleration and retardation were studied in detail by exclusively analyzing the influence of individual mode-I, mixed-mode and mode-II overload and underload fatigue cycles in an otherwise constant amplitude mode-I baseline load spectrum. The micromechanisms governing crack growth behavior under the complex biaxial loading conditions were identified and correlated with the crack growth behavior and fracture surface morphology through quantitative fractography.

(ii) Development of novel multifunctional nanocomposite materials with improved fatigue resistance and in-situ fatigue damage detection and quantification capabilities. A state-of-the-art processing method was developed for producing sizable carbon nanotube (CNT) membranes for multifunctional composites. The CNT membranes were embedded in glass fiber laminates and in-situ strain sensing and damage quantification was achieved by exploiting the piezoresistive property of the CNT membrane. In addition, improved resistance to fatigue crack growth was observed due to the embedded CNT membrane.
ContributorsDatta, Siddhant (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Marvi, Hamidreza (Committee member) / Tang, Pingbo (Committee member) / Yekani Fard, Masoud (Committee member) / Iyyer, Nagaraja (Committee member) / Arizona State University (Publisher)
Created2018
156950-Thumbnail Image.png
Description
Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily

Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity.

This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega ($A \omega$) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the $A \omega$ algorithm is based on thigh angle measurements from a single IMU.

This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator ($A\omega AO$) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The $A \omega$ algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The $A\omega AO$ method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.
ContributorsChinimilli, Prudhvi Tej (Author) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
131498-Thumbnail Image.png
Description
This project uses Kenneth Burke’s theory of dramatism and the pentad to analyze popular narrative films about human sex trafficking. It seeks to understand the relationship between a film’s dominant philosophy (as highlighted by utilizing Burke’s pentad), its inherently suggested solutions to trafficking, and the effect that the film has

This project uses Kenneth Burke’s theory of dramatism and the pentad to analyze popular narrative films about human sex trafficking. It seeks to understand the relationship between a film’s dominant philosophy (as highlighted by utilizing Burke’s pentad), its inherently suggested solutions to trafficking, and the effect that the film has on viewers’ perception of trafficking. 20 narrative feature films about sex trafficking such as the 2008 film Taken were analyzed for this study. Three out of five of Burke’s philosophies were uncovered after analysis: idealism, mysticism, and materialism. Films that aligned with idealism were found to implicitly blame women for their own trafficking. Films that aligned with mysticism were found to rally audiences around violence and racism as opposed to women’s freedom. Films that aligned with materialism were found to be the most empathetic towards trafficked women. The conclusion of this paper is that films about sex trafficking have a high potential to be harmful to women who have exited trafficking. This paper asserts that the most valuable films about trafficking are those that are not simply based on a true story but are created by trafficking survivors themselves, such as the 2016 film Apartment 407.
ContributorsHamby, Hannah Mary (Co-author) / Raum, Brionna (Co-author) / Edson, Belle (Thesis director) / Zanin, Alaina (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Hugh Downs School of Human Communication (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131511-Thumbnail Image.png
Description
This document is a proposal for a research project, submitted as an Honors Thesis to Barrett, The Honors College at Arizona State University. The proposal summarizes previous findings and literature about women survivors of domestic violence who are suffering from post-traumatic stress disorder as well as outlining the design and

This document is a proposal for a research project, submitted as an Honors Thesis to Barrett, The Honors College at Arizona State University. The proposal summarizes previous findings and literature about women survivors of domestic violence who are suffering from post-traumatic stress disorder as well as outlining the design and measures of the study. At this time, the study has not been completed. However, it may be completed at a future time.
ContributorsKunst, Jessica (Author) / Hernandez Ruiz, Eugenia (Thesis director) / Belgrave, Melita (Committee member) / School of Music (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133199-Thumbnail Image.png
Description
While there are many characteristics that make up a woman, femininity is one that is difficult to define because it is a communication and expression practice defined by culture. This research explores historical accounts of femininity in the 1950s as seen through the exemplar of the white, middle-class "happy homemaker"

While there are many characteristics that make up a woman, femininity is one that is difficult to define because it is a communication and expression practice defined by culture. This research explores historical accounts of femininity in the 1950s as seen through the exemplar of the white, middle-class "happy homemaker" or "happy housewife." The 1950s is important to study in light of changing gender and social dynamics due to the transition from World War II to a period of prosperity. By using primary sources from the 1950s and secondary historical analyses, this research takes the form of a sociological accounting of 1950s' femininity and the lessons that can be applied today. Four cultural forces led to homemakers having an unspoken identity crisis because they defined themselves in terms of relationship with others and struggled to uphold a certain level of femininity. The forces are: the feminine mystique, patriotism, cultural normalcy, and unnecessary choices. These forces caused women to have unhealthy home relationships in their marriages and motherhood while persistently doing acts to prove their self-worth, such as housework and consuming. It is important to not look back at the 1950s as an idyllic time without also considering the social and cultural practices that fostered a feminine conformity in women. Today, changes can be made to allow women to express femininity in modern ways by adapting to reality instead of to outdated values. For example, changes in maternity leave policies allow women to be mothers and still be in the workforce. Additionally, women should find fulfillment in themselves by establishing a strong personal identity and confidence in their womanhood before identifying through other people or through society.
Created2018-12
133202-Thumbnail Image.png
Description
The Centers for Disease Control and Prevention in the United States announced that there has been roughly a 50% increase in the prevalence of food allergies among people between the years of 1997 - 2011. A food allergy can be described as a medical condition where being exposed to a

The Centers for Disease Control and Prevention in the United States announced that there has been roughly a 50% increase in the prevalence of food allergies among people between the years of 1997 - 2011. A food allergy can be described as a medical condition where being exposed to a certain food triggers a harmful immune response in the body, known as an allergic reaction. These reactions can range from mild to fatal, and they are caused mainly by the top 8 major food allergens: dairy, eggs, peanuts, tree nuts, wheat, soy, fish, and shellfish. Food allergies mainly plague children under the age of 3, as some of them will grow out of their allergy sensitivity over time, and most people develop their allergies at a young age, and not when they are older. The rise in prevalence is becoming a frightening problem around the world, and there are emerging theories that are attempting to ascribe a cause. There are three well-known hypotheses that will be discussed: the Hygiene Hypothesis, the Dual-Allergen Exposure Hypothesis, and the Vitamin-D Deficiency Hypothesis. Beyond that, this report proposes that a new hypothesis be studied, the Food Systems Hypothesis. This hypothesis theorizes that the cause of the rise of food allergies is actually caused by changes in the food itself and particularly the pesticides that are used to cultivate it.
ContributorsCromer, Kelly (Author) / Lee, Rebecca (Thesis director) / MacFadyen, Joshua (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132444-Thumbnail Image.png
Description
Fashion is individual in its expression. It is also universal. Fashion is a cumulation of different influences and different interpretations. We currently live in a climate divided by race, culture, gender, and so much more. It is so difficult to find common ground on a global platform. Something that stands

Fashion is individual in its expression. It is also universal. Fashion is a cumulation of different influences and different interpretations. We currently live in a climate divided by race, culture, gender, and so much more. It is so difficult to find common ground on a global platform. Something that stands alone is fashion. Fashion is influenced by so many aspects. Of these, aspects that I am interested in are culture and sustainability. When combined with culture, fashion can anchor and have a root to the generations that came before us. When combined with sustainability, we have an anchor to the planet that we share with everyone. The result of fashion is always the same, beautiful art. I want people to see the beauty not only in the art itself, but the differences and similarities that such art provides. We all come from the same world but have different ways of expressing that world. My goal is to show people that they need to acknowledge the differences but can choose to see the similarities of each culture. Additionally, I redesign garments that capture an emotion and a story. Making each piece individual yet serving a greater purpose sustainability wise. I envision the principle of sustainable fashion to be the basis of each piece of clothing. Therefore, for my creative project I am constructing five art pieces representing five cultures that has had a significant influence on my life and personal style. These cultures are those of UAE, Germany, Nepal, Mexico, and Spain. Each of these garments are made from recycled fabric and clothing donated by family and friends. My objective is to display sustainable fashion that has deep cultural influence. Every piece has a story and an emotion attached as well to create a connection with the clothing itself.
ContributorsKreiser, Samantha Miren (Author) / Chhetri, Nalini (Thesis director) / Ellis, Naomi (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05