Matching Items (130)

134809-Thumbnail Image.png

Analysis of the Aftereffects of Terror Attacks on Social Media

Description

Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that

Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a means of managing their anxiety, a mechanism of Terror Management Theory (TMT). These opinions have distinct impacts on the emotions that people express both online and offline through both positive and negative sentiments. This paper focuses on using sentiment analysis on twitter hash-tags during five major terrorist attacks that created a significant response on social media, which collectively show the effects that 140-character tweets have on perceptions in social media. The purpose of analyzing the sentiments of tweets after terror attacks allows for the visualization of the effect of key-words and the possibility of manipulation by the use of emotional contagion. Through sentiment analysis, positive, negative and neutral emotions were portrayed in the tweets. The keywords detected also portray characteristics about terror attacks which would allow for future analysis and predictions in regards to propagating a specific emotion on social media during future crisis.

Contributors

Created

Date Created
  • 2016-12

135971-Thumbnail Image.png

NBA PlayerTrack: A Mobile Application Providing NBA Fans with Statistics, News, and Information about their Favorite Players

Description

Current popular NBA mobile applications do little to provide information about the NBA's players, usually providing limited statistical information or news and completely ignoring players' presence on social media. For

Current popular NBA mobile applications do little to provide information about the NBA's players, usually providing limited statistical information or news and completely ignoring players' presence on social media. For fans, especially fans who are unfamiliar with the NBA, finding this information by themselves can be a daunting task, one which requires extensive knowledge about how the NBA provides media related to its players. NBA PlayerTrack has been designed to centralize player information from a variety of media streams, making it easier for fans to learn about and stay up-to-date with players and enabling fan discussion about those players and the NBA in general. By providing a variety of references to the locations of player information, NBA PlayerTrack also serves as a tool for learning about how and where the NBA presents player-related media, allowing fans to more easily locate information they desire as they become more invested in the NBA.

Contributors

Agent

Created

Date Created
  • 2015-12

Predicting Bitcoin Price Trend using Sentiment Analysis

Description

In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting

In this paper I defend the argument that public reaction to news headlines correlates with the short-term price direction of Bitcoin. I collected a month's worth of Bitcoin data consisting of news headlines, tweets, and the price of the cryptocurrency. I fed this data into a Long Short-Term Memory Neural Network and built a model that predicted Bitcoin price for a new timeframe. The model correctly predicted 75% of test set price trends on 3.25 hour time intervals. This is higher than the 53.57% accuracy tested with a Bitcoin price model without sentiment data. I concluded public reaction to Bitcoin news headlines has an effect on the short-term price direction of the cryptocurrency. Investors can use my model to help them in their decision-making process when making short-term Bitcoin investment decisions.

Contributors

Agent

Created

Date Created
  • 2020-05

133334-Thumbnail Image.png

Developing Inventory Control and Build Management Software for Spacecraft Engineering

Description

Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and

Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control and build management system created for spacecraft engineers at ASU to record each step of their engineering processes. In-house development means ICDB is more precisely designed around its users' functionality and cost requirements than most off-the-shelf commercial offerings. By placing a complex relational database behind an intuitive web application, ICDB enables organizations and their users to create and store parts libraries, assembly designs, purchasing and location records for inventory items, and more.

Contributors

Agent

Created

Date Created
  • 2018-05

137682-Thumbnail Image.png

GCKEngine - An Algorithm for Automatic Ontology Building

Description

To facilitate the development of the Semantic Web, we propose in this thesis a general automatic ontology-building algorithm which, given a pool of potential terms and a set of relationships

To facilitate the development of the Semantic Web, we propose in this thesis a general automatic ontology-building algorithm which, given a pool of potential terms and a set of relationships to include in the ontology, can utilize information gathered from Google queries to build a full ontology for a certain domain. We utilized this ontology-building algorithm as part of a larger system to tag computer tutorials for three systems with different kinds of metadata, and index the tagged documents into a search engine. Our evaluation of the resultant search engine indicates that our automatic ontology-building algorithm is able to build relatively good-quality ontologies and utilize this ontology to effectively apply metadata to documents.

Contributors

Agent

Created

Date Created
  • 2013-05

137174-Thumbnail Image.png

Analysis of Twitter's Effect on Stock Prices

Description

Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a

Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing a program to grab tweets about the stocks of the thirty companies in the Dow Jones.

Contributors

Agent

Created

Date Created
  • 2014-05

129297-Thumbnail Image.png

ORTHOGONAL RANK-ONE MATRIX PURSUIT FOR LOW RANK MATRIX COMPLETION

Description

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend the orthogonal matching pursuit method from the vector case to

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend the orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix pursuit iteration and find satisfactory results in a few iterations. Another advantage of our proposed algorithm is that it has only one tunable parameter, which is the rank. It is easy to understand and to use by the user. This becomes especially important in large-scale learning problems. In addition, we rigorously show that both versions achieve a linear convergence rate, which is significantly better than the previous known results. We also empirically compare the proposed algorithms with several state-of-the-art matrix completion algorithms on many real-world datasets, including the large-scale recommendation dataset Netflix as well as the MovieLens datasets. Numerical results show that our proposed algorithm is more efficient than competing algorithms while achieving similar or better prediction performance.

Contributors

Agent

Created

Date Created
  • 2014-11-30

158774-Thumbnail Image.png

On Feature Saliency and Deep Neural Networks

Description

Technological advances have allowed for the assimilation of a variety of data, driving a shift away from the use of simpler and constrained patterns to more complex and diverse patterns

Technological advances have allowed for the assimilation of a variety of data, driving a shift away from the use of simpler and constrained patterns to more complex and diverse patterns in retrieval and analysis of such data. This shift has inundated the conventional techniques and has stressed the need for intelligent mechanisms that can model the complex patterns in the data. Deep neural networks have shown some success at capturing complex patterns, including the so-called attentioned networks, have significant shortcomings in distinguishing what is important in data from what is noise. This dissertation observes that the traditional neural networks primarily rely solely on gradient-based learning to model deep features maps while ignoring the key insight in the data that can be leveraged as complementary information to help learn an accurate model. In particular, this dissertation shows that the localized multi-scale features (captured implicitly or explicitly) can be leveraged to help improve model performance as these features capture salient informative points in the data.

This dissertation focuses on “working with the data, not just on data”, i.e. leveraging feature saliency through pre-training, in-training, and post-training analysis of the data. In particular, non-neural localized multi-scale feature extraction, in images and time series, are relatively cheap to obtain and can provide a rough overview of the patterns in the data. Furthermore, localized features coupled with deep features can help learn a high performing network. A pre-training analysis of sizes, complexities, and distribution of these localized features can help intelligently allocate a user-provided kernel budget in the network as a single-shot hyper-parameter search. Additionally, these localized features can be used as a secondary input modality to the network for cross-attention. Retraining pre-trained networks can be a costly process, yet, a post-training analysis of model inferences can allow for learning the importance of individual network parameters to the model inferences thus facilitating a retraining-free network sparsification with minimal impact on the model performance. Furthermore, effective in-training analysis of the intermediate features in the network help learn the importance of individual intermediate features (neural attention) and this analysis can be achieved through simulating local-extrema detection or learning features simultaneously and understanding their co-occurrences. In summary, this dissertation argues and establishes that, if appropriately leveraged, localized features and their feature saliency can help learn high-accurate, yet cheaper networks.

Contributors

Agent

Created

Date Created
  • 2020

153229-Thumbnail Image.png

Efficient processing of skyline queries on static data sources, data streams and incomplete datasets

Description

Skyline queries extract interesting points that are non-dominated and help paint the bigger picture of the data in question. They are valuable in many multi-criteria decision applications and are becoming

Skyline queries extract interesting points that are non-dominated and help paint the bigger picture of the data in question. They are valuable in many multi-criteria decision applications and are becoming a staple of decision support systems.

An assumption commonly made by many skyline algorithms is that a skyline query is applied to a single static data source or data stream. Unfortunately, this assumption does not hold in many applications in which a skyline query may involve attributes belonging to multiple data sources and requires a join operation to be performed before the skyline can be produced. Recently, various skyline-join algorithms have been proposed to address this problem in the context of static data sources. However, these algorithms suffer from several drawbacks: they often need to scan the data sources exhaustively to obtain the skyline-join results; moreover, the pruning techniques employed to eliminate tuples are largely based on expensive tuple-to-tuple comparisons. On the other hand, most data stream techniques focus on single stream skyline queries, thus rendering them unsuitable for skyline-join queries.

Another assumption typically made by most of the earlier skyline algorithms is that the data is complete and all skyline attribute values are available. Due to this constraint, these algorithms cannot be applied to incomplete data sources in which some of the attribute values are missing and are represented by NULL values. There exists a definition of dominance for incomplete data, but this leads to undesirable consequences such as non-transitive and cyclic dominance relations both of which are detrimental to skyline processing.

Based on the aforementioned observations, the main goal of the research described in this dissertation is the design and development of a framework of skyline operators that effectively handles three distinct types of skyline queries: 1) skyline-join queries on static data sources, 2) skyline-window-join queries over data streams, and 3) strata-skyline queries on incomplete datasets. This dissertation presents the unique challenges posed by these skyline queries and addresses the shortcomings of current skyline techniques by proposing efficient methods to tackle the added overhead in processing skyline queries on static data sources, data streams, and incomplete datasets.

Contributors

Agent

Created

Date Created
  • 2014