Matching Items (25)
Filtering by

Clear all filters

157215-Thumbnail Image.png
Description
Non-line-of-sight (NLOS) imaging of objects not visible to either the camera or illumina-

tion source is a challenging task with vital applications including surveillance and robotics.

Recent NLOS reconstruction advances have been achieved using time-resolved measure-

ments. Acquiring these time-resolved measurements requires expensive and specialized

detectors and laser sources. In work proposes a data-driven

Non-line-of-sight (NLOS) imaging of objects not visible to either the camera or illumina-

tion source is a challenging task with vital applications including surveillance and robotics.

Recent NLOS reconstruction advances have been achieved using time-resolved measure-

ments. Acquiring these time-resolved measurements requires expensive and specialized

detectors and laser sources. In work proposes a data-driven approach for NLOS 3D local-

ization requiring only a conventional camera and projector. The localisation is performed

using a voxelisation and a regression problem. Accuracy of greater than 90% is achieved

in localizing a NLOS object to a 5cm × 5cm × 5cm volume in real data. By adopting

the regression approach an object of width 10cm to localised to approximately 1.5cm. To

generalize to line-of-sight (LOS) scenes with non-planar surfaces, an adaptive lighting al-

gorithm is adopted. This algorithm, based on radiosity, identifies and illuminates scene

patches in the LOS which most contribute to the NLOS light paths, and can factor in sys-

tem power constraints. Improvements ranging from 6%-15% in accuracy with a non-planar

LOS wall using adaptive lighting is reported, demonstrating the advantage of combining

the physics of light transport with active illumination for data-driven NLOS imaging.
ContributorsChandran, Sreenithy (Author) / Jayasuriya, Suren (Thesis advisor) / Turaga, Pavan (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2019
187685-Thumbnail Image.png
Description
Computed tomography (CT) and synthetic aperture sonar (SAS) are tomographic imaging techniques that are fundamental for applications within medical and remote sensing. Despite their successes, a number of factors constrain their image quality. For example, a time-varying scene during measurement acquisition yields image artifacts. Additionally, factors such as bandlimited or

Computed tomography (CT) and synthetic aperture sonar (SAS) are tomographic imaging techniques that are fundamental for applications within medical and remote sensing. Despite their successes, a number of factors constrain their image quality. For example, a time-varying scene during measurement acquisition yields image artifacts. Additionally, factors such as bandlimited or sparse measurements limit image resolution. This thesis presents novel algorithms and techniques to account for these factors during image formation and outperform traditional reconstruction methods. In particular, this thesis formulates analysis-by-synthesis optimizations that leverage neural fields to predict the scene and differentiable physics models that incorporate prior knowledge about image formation. The specific contributions include: (1) a method for reconstructing CT measurements from time-varying (non-stationary) scenes; (2) a method for deconvolving SAS images, which benefits image quality; (3) a method that couples neural fields and a differentiable acoustic model for 3D SAS reconstructions.
ContributorsReed, Albert William (Author) / Jayasuriya, Suren (Thesis advisor) / Brown, Daniel C (Committee member) / Dasarathy, Gautam (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2023
189226-Thumbnail Image.png
Description
This dissertation explores the use of artificial intelligence and machine learningtechniques for the development of controllers for fully-powered robotic prosthetics. The aim of the research is to enable prosthetics to predict future states and control biomechanical properties in both linear and nonlinear fashions, with a particular focus on ergonomics. The research is motivated by

This dissertation explores the use of artificial intelligence and machine learningtechniques for the development of controllers for fully-powered robotic prosthetics. The aim of the research is to enable prosthetics to predict future states and control biomechanical properties in both linear and nonlinear fashions, with a particular focus on ergonomics. The research is motivated by the need to provide amputees with prosthetic devices that not only replicate the functionality of the missing limb, but also offer a high level of comfort and usability. Traditional prosthetic devices lack the sophistication to adjust to a user’s movement patterns and can cause discomfort and pain over time. The proposed solution involves the development of machine learning-based controllers that can learn from user movements and adjust the prosthetic device’s movements accordingly. The research involves a combination of simulation and real-world testing to evaluate the effectiveness of the proposed approach. The simulation involves the creation of a model of the prosthetic device and the use of machine learning algorithms to train controllers that predict future states and control biomechanical properties. The real- world testing involves the use of human subjects wearing the prosthetic device to evaluate its performance and usability. The research focuses on two main areas: the prediction of future states and the control of biomechanical properties. The prediction of future states involves the development of machine learning algorithms that can analyze a user’s movements and predict the next movements with a high degree of accuracy. The control of biomechanical properties involves the development of algorithms that can adjust the prosthetic device’s movements to ensure maximum comfort and usability for the user. The results of the research show that the use of artificial intelligence and machine learning techniques can significantly improve the performance and usability of pros- thetic devices. The machine learning-based controllers developed in this research are capable of predicting future states and adjusting the prosthetic device’s movements in real-time, leading to a significant improvement in ergonomics and usability. Overall, this dissertation provides a comprehensive analysis of the use of artificial intelligence and machine learning techniques for the development of controllers for fully-powered robotic prosthetics.
ContributorsCLARK, GEOFFEY M (Author) / Ben Amor, Heni (Thesis advisor) / Dasarathy, Gautam (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Ward, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2023
187804-Thumbnail Image.png
Description
Quantum computing is becoming more accessible through modern noisy intermediate scale quantum (NISQ) devices. These devices require substantial error correction and scaling before they become capable of fulfilling many of the promises that quantum computing algorithms make. This work investigates the current state of NISQ devices by implementing multiple classical

Quantum computing is becoming more accessible through modern noisy intermediate scale quantum (NISQ) devices. These devices require substantial error correction and scaling before they become capable of fulfilling many of the promises that quantum computing algorithms make. This work investigates the current state of NISQ devices by implementing multiple classical computing scenarios with a quantum analog to observe how current quantum technology can be leveraged to achieve different tasks. First, quantum homomorphic encryption (QHE) is applied to the quantum teleportation protocol to show that this form of algorithm security is possible to implement with modern quantum computing simulators. QHE is capable of completely obscuring a teleported state with a liner increase in the number of qubit gates O(n). Additionally, the circuit depth increases minimally by only a constant factor O(c) when using only stabilizer circuits. Quantum machine learning (QML) is another potential application of NISQ technology that can be used to modify classical AI. QML is investigated using quantum hybrid neural networks for the classification of spoken commands on live audio data. Additionally, an edge computing scenario is examined to profile the interactions between a quantum simulator acting as a cloud server and an embedded processor board at the network edge. It is not practical to embed NISQ processors at a network edge, so this paradigm is important to study for practical quantum computing systems. The quantum hybrid neural network (QNN) learned to classify audio with equivalent accuracy (~94%) to a classical recurrent neural network. Introducing quantum simulation slows the systems responsiveness because it takes significantly longer to process quantum simulations than a classical neural network. This work shows that it is viable to implement classical computing techniques with quantum algorithms, but that current NISQ processing is sub-optimal when compared to classical methods.
ContributorsYarter, Maxwell (Author) / Spanias, Andreas (Thesis advisor) / Arenz, Christian (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2023
168621-Thumbnail Image.png
Description
Due to their effectiveness in capturing similarities between different entities, graphical models are widely used to represent datasets that reside on irregular and complex manifolds. Graph signal processing offers support to handle such complex datasets. By extending the digital signal processing conceptual frame from time and frequency domain to graph

Due to their effectiveness in capturing similarities between different entities, graphical models are widely used to represent datasets that reside on irregular and complex manifolds. Graph signal processing offers support to handle such complex datasets. By extending the digital signal processing conceptual frame from time and frequency domain to graph domain, operators such as graph shift, graph filter and graph Fourier transform are defined. In this dissertation, two novel graph filter design methods are proposed. First, a graph filter with multiple shift matrices is applied to semi-supervised classification, which can handle features with uneven qualities through an embedded feature importance evaluation process. Three optimization solutions are provided: an alternating minimization method that is simple to implement, a convex relaxation method that provides a theoretical performance benchmark and a genetic algorithm, which is computationally efficient and better at configuring overfitting. Second, a graph filter with splitting-and-merging scheme is proposed, which splits the graph into multiple subgraphs. The corresponding subgraph filters are trained parallelly and in the last, by merging all the subgraph filters, the final graph filter is obtained. Due to the splitting process, the redundant edges in the original graph are dropped, which can save computational cost in semi-supervised classification. At the same time, this scheme also enables the filter to represent unevenly sampled data in manifold learning. To evaluate the performance of the proposed graph filter design approaches, simulation experiments with synthetic and real datasets are conduct. The Monte Carlo cross validation method is employed to demonstrate the need for the proposed graph filter design approaches in various application scenarios. Criterions, such as accuracy, Gini score, F1-score and learning curves, are provided to analyze the performance of the proposed methods and their competitors.
ContributorsFan, Jie (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2022
157977-Thumbnail Image.png
Description
Deep neural networks (DNNs) have had tremendous success in a variety of

statistical learning applications due to their vast expressive power. Most

applications run DNNs on the cloud on parallelized architectures. There is a need

for for efficient DNN inference on edge with low precision hardware and analog

accelerators. To make trained models more

Deep neural networks (DNNs) have had tremendous success in a variety of

statistical learning applications due to their vast expressive power. Most

applications run DNNs on the cloud on parallelized architectures. There is a need

for for efficient DNN inference on edge with low precision hardware and analog

accelerators. To make trained models more robust for this setting, quantization and

analog compute noise are modeled as weight space perturbations to DNNs and an

information theoretic regularization scheme is used to penalize the KL-divergence

between perturbed and unperturbed models. This regularizer has similarities to

both natural gradient descent and knowledge distillation, but has the advantage of

explicitly promoting the network to and a broader minimum that is robust to

weight space perturbations. In addition to the proposed regularization,

KL-divergence is directly minimized using knowledge distillation. Initial validation

on FashionMNIST and CIFAR10 shows that the information theoretic regularizer

and knowledge distillation outperform existing quantization schemes based on the

straight through estimator or L2 constrained quantization.
ContributorsKadambi, Pradyumna (Author) / Berisha, Visar (Thesis advisor) / Dasarathy, Gautam (Committee member) / Seo, Jae-Sun (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2019
158139-Thumbnail Image.png
Description
Modern digital applications have significantly increased the leakage of private and sensitive personal data. While worst-case measures of leakage such as Differential Privacy (DP) provide the strongest guarantees, when utility matters, average-case information-theoretic measures can be more relevant. However, most such information-theoretic measures do not have clear operational meanings. This

Modern digital applications have significantly increased the leakage of private and sensitive personal data. While worst-case measures of leakage such as Differential Privacy (DP) provide the strongest guarantees, when utility matters, average-case information-theoretic measures can be more relevant. However, most such information-theoretic measures do not have clear operational meanings. This dissertation addresses this challenge.

This work introduces a tunable leakage measure called maximal $\alpha$-leakage which quantifies the maximal gain of an adversary in inferring any function of a data set. The inferential capability of the adversary is modeled by a class of loss functions, namely, $\alpha$-loss. The choice of $\alpha$ determines specific adversarial actions ranging from refining a belief for $\alpha =1$ to guessing the best posterior for $\alpha = \infty$, and for the two specific values maximal $\alpha$-leakage simplifies to mutual information and maximal leakage, respectively. Maximal $\alpha$-leakage is proved to have a composition property and be robust to side information.

There is a fundamental disjoint between theoretical measures of information leakages and their applications in practice. This issue is addressed in the second part of this dissertation by proposing a data-driven framework for learning Censored and Fair Universal Representations (CFUR) of data. This framework is formulated as a constrained minimax optimization of the expected $\alpha$-loss where the constraint ensures a measure of the usefulness of the representation. The performance of the CFUR framework with $\alpha=1$ is evaluated on publicly accessible data sets; it is shown that multiple sensitive features can be effectively censored to achieve group fairness via demographic parity while ensuring accuracy for several \textit{a priori} unknown downstream tasks.

Finally, focusing on worst-case measures, novel information-theoretic tools are used to refine the existing relationship between two such measures, $(\epsilon,\delta)$-DP and R\'enyi-DP. Applying these tools to the moments accountant framework, one can track the privacy guarantee achieved by adding Gaussian noise to Stochastic Gradient Descent (SGD) algorithms. Relative to state-of-the-art, for the same privacy budget, this method allows about 100 more SGD rounds for training deep learning models.
ContributorsLiao, Jiachun (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Junshan (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2020
158845-Thumbnail Image.png
Description
The Human Gut Microbiome (GM) modulates a variety of structural, metabolic, and protective functions to benefit the host. A few recent studies also support the role of the gut microbiome in the regulation of bone health. The relationship between GM and bone health was analyzed based on the data collected

The Human Gut Microbiome (GM) modulates a variety of structural, metabolic, and protective functions to benefit the host. A few recent studies also support the role of the gut microbiome in the regulation of bone health. The relationship between GM and bone health was analyzed based on the data collected from a group of twenty-three adolescent boys and girls who participated in a controlled feeding study, during which two different doses (0 g/d fiber and 12 g/d fiber) of Soluble Corn Fiber (SCF) were added to their diet. This analysis was performed by predicting measures of Bone Mineral Density (BMD) and Bone Mineral Content (BMC) which are indicators of bone strength, using the GM sequence of proportions of 178 microbes collected from 23 subjects, by building a machine learning regression model. The model developed was evaluated by calculating performance metrics such as Root Mean Squared Error, Pearson’s correlation coefficient, and Spearman’s rank correlation coefficient, using cross-validation. A noticeable correlation was observed between the GM and bone health, and it was observed that the overall prediction correlation was higher with SCF intervention (r ~ 0.51). The genera of microbes that played an important role in this relationship were identified. Eubacterium (g), Bacteroides (g), Megamonas (g), Acetivibrio (g), Faecalibacterium (g), and Paraprevotella (g) were some of the microbes that showed an increase in proportion with SCF intervention.
ContributorsKetha Hazarath, Pravallika Reddy (Author) / Bliss, Daniel (Thesis advisor) / Whisner, Corrie (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2020
Description
Hyperspectral unmixing is an important remote sensing task with applications including material identification and analysis. Characteristic spectral features make many pure materials identifiable from their visible-to-infrared spectra, but quantifying their presence within a mixture is a challenging task due to nonlinearities and factors of variation. In this thesis, physics-based approaches

Hyperspectral unmixing is an important remote sensing task with applications including material identification and analysis. Characteristic spectral features make many pure materials identifiable from their visible-to-infrared spectra, but quantifying their presence within a mixture is a challenging task due to nonlinearities and factors of variation. In this thesis, physics-based approaches are incorporated into an end-to-end spectral unmixing algorithm via differentiable programming. First, sparse regularization and constraints are implemented by adding differentiable penalty terms to a cost function to avoid unrealistic predictions. Secondly, a physics-based dispersion model is introduced to simulate realistic spectral variation, and an efficient method to fit the parameters is presented. Then, this dispersion model is utilized as a generative model within an analysis-by-synthesis spectral unmixing algorithm. Further, a technique for inverse rendering using a convolutional neural network to predict parameters of the generative model is introduced to enhance performance and speed when training data are available. Results achieve state-of-the-art on both infrared and visible-to-near-infrared (VNIR) datasets as compared to baselines, and show promise for the synergy between physics-based models and deep learning in hyperspectral unmixing in the future.
ContributorsJaniczek, John (Author) / Jayasuriya, Suren (Thesis advisor) / Dasarathy, Gautam (Thesis advisor) / Christensen, Phil (Committee member) / Arizona State University (Publisher)
Created2020
157748-Thumbnail Image.png
Description
The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the

The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the use of physical-based models with Bayesian nonparametric methods to address the main challenges in a tracking problem. In particular, Bayesian nonparametric methods are exploited to efficiently and robustly infer object identity and learn time-dependent cardinality; together with Bayesian inference methods, they are also used to associate measurements to objects and estimate the trajectory of objects. These methods differ from the current methods to the core as the existing methods are mainly based on random finite set theory.

The first contribution proposes dependent nonparametric models such as the dependent Dirichlet process and the dependent Pitman-Yor process to capture the inherent time-dependency in the problem at hand. These processes are used as priors for object state distributions to learn dependent information between previous and current time steps. Markov chain Monte Carlo sampling methods exploit the learned information to sample from posterior distributions and update the estimated object parameters.

The second contribution proposes a novel, robust, and fast nonparametric approach based on a diffusion process over infinite random trees to infer information on object cardinality and trajectory. This method follows the hierarchy induced by objects entering and leaving a scene and the time-dependency between unknown object parameters. Markov chain Monte Carlo sampling methods integrate the prior distributions over the infinite random trees with time-dependent diffusion processes to update object states.

The third contribution develops the use of hierarchical models to form a prior for statistically dependent measurements in a single object tracking setup. Dependency among the sensor measurements provides extra information which is incorporated to achieve the optimal tracking performance. The hierarchical Dirichlet process as a prior provides the required flexibility to do inference. Bayesian tracker is integrated with the hierarchical Dirichlet process prior to accurately estimate the object trajectory.

The fourth contribution proposes an approach to model both the multiple dependent objects and multiple dependent measurements. This approach integrates the dependent Dirichlet process modeling over the dependent object with the hierarchical Dirichlet process modeling of the measurements to fully capture the dependency among both object and measurements. Bayesian nonparametric models can successfully associate each measurement to the corresponding object and exploit dependency among them to more accurately infer the trajectory of objects. Markov chain Monte Carlo methods amalgamate the dependent Dirichlet process with the hierarchical Dirichlet process to infer the object identity and object cardinality.

Simulations are exploited to demonstrate the improvement in multiple object tracking performance when compared to approaches that are developed based on random finite set theory.
ContributorsMoraffah, Bahman (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel W. (Committee member) / Richmond, Christ D. (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2019