Matching Items (17)
Filtering by

Clear all filters

136180-Thumbnail Image.png
Description
Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this

Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity and conductivity of these mixtures were measured experimentally. The composition region below 50% water by mole was found to be dramatically different from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
ContributorsNgan, Miranda L (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
133163-Thumbnail Image.png
Description
This thesis investigates an interpenetrating network of polyacrylamide and poly acrylic acid for use in a dynamic tactile display, which presents traditionally two-dimensional electronic screens as three-dimensional topographical models that can be experienced through touch. This kind of display would allow for greater access to traditionally visual information for the

This thesis investigates an interpenetrating network of polyacrylamide and poly acrylic acid for use in a dynamic tactile display, which presents traditionally two-dimensional electronic screens as three-dimensional topographical models that can be experienced through touch. This kind of display would allow for greater access to traditionally visual information for the visually impaired. This hydrogel demonstrates Upper Critical Solution Temperature (UCST) near room temperature which facilitates a swelling transition, characterized by a sharp increase in swelling as this temperature is surpassed. Through the utilization of light responsive additives, light can trigger this shift, as the additives harness visible light, convert it into heat to raise the gel’s temperature, and increase the volume of the gel. Light-responsive additives explored include chlorophyllin, gold nanoparticles, and carbon black. Each of these additives required unique synthesis planning and strategies in order to optimize the performance of the gels. Synthesized gels were characterized using thermal swelling tests, light response tests and compression tests to determine the material strength. The best performing additive was chlorophyllin and allowed for a 20.8%±4.5% percent weight increase upon exposure to light for 10 minutes. In addition to investigating light-responsive additives, modifications were pursued to alter the overall UCST behavior, such as the addition of sodium chloride. By adding sodium chloride into the hydrogel, the gel was found to have a wider transition. Overall, light-responsive behavior was developed, and further work can be done in improving the response time and degree of swelling in order to make this material more viable for use in a dynamic tactile display.
ContributorsSitterle, Philip Kerry (Author) / Dai, Lenore (Thesis director) / Xu, Yifei (Committee member) / School of Music (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137284-Thumbnail Image.png
Description
Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than

Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than pure gold nanoparticles due to reduced agglomeration. With the addition of N-isopropylacrylamide (NIPAAM) monomers, temperature-responsive asymmetric and core-shell polystyrene/poly(N-isopropylacrylamide)-gold composite particles are also synthesized via Pickering emulsion polymerization. The asymmetric particles have a greater thermo-responsiveness than the core-shell particles due to the increased presence of NIPAAM monomers in the seeded-growth formation. Poly(N-isopropylacrylamide) (PNIPAM)-containing asymmetric particles have tunable rheological and optical properties due to their significant size decrease above the lower critical solution temperature (LCST).
ContributorsRabiah, Noelle Ibrahim (Author) / Dai, Lenore (Thesis director) / Torres, Cesar (Committee member) / Zhang, Mingmeng (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136927-Thumbnail Image.png
Description
The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.
ContributorsStehlik, Daniel Wesley (Author) / Chan, Candace K. (Thesis director) / Dai, Lenore (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
134582-Thumbnail Image.png
Description
The purpose of this project is to investigate the swelling ratio exhibited due to photothermal effects of double network polyacrylamide poly(acrylic acid) hydrogels synthesized with carbon black as a light-sensitive chromophore. Optimal carbon black dispersion was achieved in solutions through sonication, using V9A32 carbon black, where dynamic light scattering recorded

The purpose of this project is to investigate the swelling ratio exhibited due to photothermal effects of double network polyacrylamide poly(acrylic acid) hydrogels synthesized with carbon black as a light-sensitive chromophore. Optimal carbon black dispersion was achieved in solutions through sonication, using V9A32 carbon black, where dynamic light scattering recorded particle diameters in the range of 195.0-375.8 nanometers for water/carbon black mixtures, 242.4-262.6 nanometers for monomer/carbon black mixtures without initiator, and 1109.3-1783.9 nanometers for monomer/carbon black mixtures including initiator. The double network polyacrylamide poly(acrylic acid) hydrogels with carbon black yielded weight increases of 0.126% and 6.043%, respectively, after 2 minutes and 10 minutes of being exposed to a light stimulus; compared to previous work which showed a double network polyacrylamide poly(acrylic acid) hydrogel with chlorophyllin yielded weight increases of 18.3% and 20.8%, respectively, after 2 minutes and 10 minutes of being exposed to a light stimulus, the carbon black resulted in a less robust response. Future work for application of the light-responsive hydrogels includes the development of a screen covering that will be made of the hydrogels. This covering is intended for use on LED screen displays, where a light change will result in a protrusion from the screen. The purpose behind this application is that technology users who are visually impaired can still determine what their LED device is trying to communicate with them.
ContributorsReimann, Morgan Elizabeth (Co-author) / Yifei, Xu (Co-author) / Dai, Lenore (Co-author, Thesis director) / Xu, Yifei (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133145-Thumbnail Image.png
Description
This study aims to determine the feasibility of producing mechanophore-incorporated epoxy that can be healed. This was accomplished by grafting a synthesized mechanophore into tris(2-aminoethyl)amine to create a new epoxy hardener. Then this branched hardener was combined with a second hardener, diethylenetriamine (DETA). A proper ratio of the branched hardener

This study aims to determine the feasibility of producing mechanophore-incorporated epoxy that can be healed. This was accomplished by grafting a synthesized mechanophore into tris(2-aminoethyl)amine to create a new epoxy hardener. Then this branched hardener was combined with a second hardener, diethylenetriamine (DETA). A proper ratio of the branched hardener to the DETA will ensure that the created epoxy will retain the force responsive characteristics without a noticeable decline in both the physical and thermal properties. Furthermore, it was desired that the natural structure of the epoxy would be left in place, and there would only be enough branched hardener present to elicit a force response and provide the possibility for healing. The two hardeners would then be added to Diglycidyl Ether of Bisphenol F (DGEBPF), which is the epoxy resin. The mechanophore-incorporated epoxy was compared to a standard epoxy—just DETA and DGEBPF—and it was determined that the incorporation of the mechanophore led to an 8.2 degrees Celsius increase in glass transition temperature, and a 33.0% increase in cross link density. This justified the mechanophore-incorporated epoxy as a feasible alternative to the standard, as its primary thermal and physical properties were not only equal, but superior. Then samples of the mechanophore-incorporated epoxy were damaged with a 3% tensile strain. This would cause a cycloreversion in the central cyclobutane inside of the mechanophore. Then they were healed with UV light, which would redimerize the severed hardener moieties. The healed samples saw a 4.69% increase in cross-link density, demonstrating that healing was occurring.
ContributorsPauley, Bradley (Author) / Dai, Lenore (Thesis director) / Gunckel, Ryan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134918-Thumbnail Image.png
Description
Statistical process control (SPC) is an important quality application that is used throughout industry and is composed of control charts. Most often, it is applied in the final stages of product manufacturing. However it would be beneficial to apply SPC throughout all stages of the manufacturing process such as the

Statistical process control (SPC) is an important quality application that is used throughout industry and is composed of control charts. Most often, it is applied in the final stages of product manufacturing. However it would be beneficial to apply SPC throughout all stages of the manufacturing process such as the beginning stages. This report explores the fundamentals of SPC, applicable programs, important aspects of implementation, and specific examples of where SPC was beneficial. Important programs for SPC are general statistical software such as JMP and Minitab, and some programs are made specifically for SPC such as SPACE: statistical process and control environment. Advanced programs like SPACE are beneficial because they can easily assist with creating control charts and setting up rules, alarms and notifications, and reaction mechanisms. After the charts are set up it is important to apply rules to the charts to see when a system is running off target which indicates the need to troubleshoot and investigate. This makes the notification part an integral aspect as well because attention and awareness must be brought to out of control situations. The next important aspect is ensuring there is a reaction mechanism or plan on what to do in the event of an out of control situation and what to do to get the system running back on target. Setting up an SPC system takes time and practice and requires a lot of collaboration with experts who know more about the system or the quality side. Some of the more difficult parts of implementation is getting everyone on board and creating trainings and getting the appropriate personnel trained.
ContributorsSennavongsa, Christy (Author) / Raupp, Gregory (Thesis director) / Dai, Lenore (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137708-Thumbnail Image.png
Description
Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle

Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle surface chemistries were investigated: (1) hydrocarbon-saturated and (2) silanol-saturated, representing hydrophobic and hydrophilic particles, respectively. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]-[PF6]) as a model IL, these nanoparticles were allowed to equilibrate at the IL/water and IL/hexane interfaces to observe the interfacial self-assembled structures. At the IL/water interface, the hydrocarbon-based nanoparticles were nearly completely absorbed by the IL, while the silica nanoparticles maintained equal volume in both phases. At the IL/hexane interface, the hydrocarbon nanoparticles maintained minimal interactions with the IL, whereas the silica nanoparticles were nearly completely absorbed by it. Studies of these two types of nanoparticles immersed in the bulk IL indicate that the surface chemistry has a great effect on the corresponding IL liquid structure. These effects include layering of the ions, hydrogen bonding, and irreversible absorption of some ions to the silica nanoparticle surface. These effects are quantified with respect to each nanoparticle. The results suggest that ILs likely exhibit this absorption capability because they can form solvation layers with reduced dynamics around the nanoparticles.
ContributorsMachas, Michael Stafford (Author) / Dai, Lenore (Thesis director) / Lind, Mary Laura (Committee member) / Frost, Denzil (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137633-Thumbnail Image.png
Description
This project is part of a larger project involving making membranes for the separation of potable water from urine solutions for applications in space travel. This project deals specifically with testing LTA nanozeolites that will be used in the membrane under a variety of acidic conditions, specifically in solutions of

This project is part of a larger project involving making membranes for the separation of potable water from urine solutions for applications in space travel. This project deals specifically with testing LTA nanozeolites that will be used in the membrane under a variety of acidic conditions, specifically in solutions of sulfuric acid, chromium trioxide, and potassium phosphate of pHs ranging from .5 to 5, in order to investigate the effects of pH, acid type, and time. They were analyzed using SEM, FTIR, and XRD, in order to analyze how much the zeolite was degraded under the conditions of each solution. It was determined that, for high pH values (4-5), potassium phosphate had the strongest effect, as it degraded the zeolite to the point of destroying the crystal structure completely. Because of the solubility limit of potassium phosphate in water, it could not be analyzed at low pH, so only sulfuric acid and chromium trioxide were analyzed at low pH (.5-3). They both had severe effects, sulfuric acid being slightly more severe, with both of them completely dissolving the zeolite at pH values of 1 and lower. Decreasing pH increased degradation for all of the acids, with pH values above 2 for sulfuric acid and chromium trioxide showing only minor degradation, and pH 5 potassium phosphate showing only minor degradation.
ContributorsWaller, Aaron Christopher (Author) / Lind, Mary Laura (Thesis director) / Dai, Lenore (Committee member) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05