Matching Items (24)
Description
This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1)

This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.
ContributorsMartinjako, Jeremy (Author) / Trimble, Steve (Thesis advisor) / Dahm, Werner (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2014
156632-Thumbnail Image.png
Description
Two methods of improving the life and efficiency of the Pulsed Inductive Thruster

(PIT) have been investigated. The first is a trade study of available switches to

determine the best device to implement in the PIT design. The second is the design

of a coil to improve coupling between the accelerator coil and

Two methods of improving the life and efficiency of the Pulsed Inductive Thruster

(PIT) have been investigated. The first is a trade study of available switches to

determine the best device to implement in the PIT design. The second is the design

of a coil to improve coupling between the accelerator coil and the plasma. Experiments

were done with both permanent and electromagnets to investigate the feasibility of

implementing a modified Halbach array within the PIT to promote better plasma

coupling and decrease the unused space within the thruster. This array proved to

promote more complete coupling on the edges of the coil where it had been weak in

previous studies. Numerical analysis was done to predict the performance of a PIT

that utilized each suggested switch type. This model utilized the Alfven velocity to

determine the critical mass and energy of these theoretical thrusters.
ContributorsRaines, Taylor (Author) / Takahashi, Timothy T (Thesis advisor) / White, Daniel B (Committee member) / Dahm, Werner (Committee member) / Arizona State University (Publisher)
Created2018
157140-Thumbnail Image.png
Description
In previous work, the effects of power extraction for onboard electrical equipment and flight control systems were studied to determine which turbine shaft (i.e. high power shaft vs low power shaft) is best suited for power extraction. This thesis will look into an alternative option, a three-spool design with a

In previous work, the effects of power extraction for onboard electrical equipment and flight control systems were studied to determine which turbine shaft (i.e. high power shaft vs low power shaft) is best suited for power extraction. This thesis will look into an alternative option, a three-spool design with a high-pressure turbine, low-pressure turbine, and a turbine dedicated to driving the fan. One of the three-spool turbines is designed to be a vaneless counter-rotating turbine. The off-design performance of this new design will be compared to the traditional two-spool design to determine if the additional spool is a practical alternative to current designs for high shaft horsepower extraction requirements. Upon analysis, this thesis has shown that a three-spool engine with a vaneless counter-rotating stage has worse performance characteristics than traditional two-spool designs for UAV systems.
ContributorsBurgett, Luke Michael (Author) / Takahashi, Timothy (Thesis advisor) / Dahm, Werner (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2019
156949-Thumbnail Image.png
Description
Laser radars or lidar’s have been used extensively to remotely study winds within the atmospheric boundary layer and atmospheric transport. Lidar sensors have become an important tool within the meteorology and the wind energy community. For example, Doppler lidars are used frequently in wind resource assessment, wind turbine control as

Laser radars or lidar’s have been used extensively to remotely study winds within the atmospheric boundary layer and atmospheric transport. Lidar sensors have become an important tool within the meteorology and the wind energy community. For example, Doppler lidars are used frequently in wind resource assessment, wind turbine control as well as in atmospheric science research. A Time of Flight based (ToF) direct detection lidar sensor is used in vehicles to navigate through complex and dynamic environments autonomously. These optical sensors are used to map the environment around the car accurately for perception and localization tasks that help achieve complete autonomy.

This thesis begins with a detailed discussion on the fundamentals of a Doppler lidar system. The laser signal flow path to and from the target, the optics of the system and the core signal processing algorithms used to extract velocity information, were studied to get closer to the hardware of a Doppler lidar sensor. A Doppler lidar simulator was built to study the existing signal processing algorithms to detect and estimate doppler frequency, and radial velocity information. Understanding the sensor and its processing at the hardware level is necessary to develop new algorithms to detect and track specific flow structures in the atmosphere. For example, the aircraft vortices have been a topic of extensive research and doppler lidars have proved to be a valuable sensor to detect and track these coherent flow structures. Using the lidar simulator a physics based doppler lidar vortex algorithm is tested on simulated data to track a pair of counter rotating aircraft vortices.



At a system level the major components of a time of flight lidar is very similar to a Doppler lidar. The fundamental physics of operation is however different. While doppler lidars are used for radial velocity measurement, ToF sensors as the name suggests provides precise depth measurements by measuring time of flight between the transmitted and the received pulses. The second part of this dissertation begins to explore the details of ToF lidar system. A system level design, to build a ToF direct detection lidar system is presented. Different lidar sensor modalities that are currently used with sensors in the market today for automotive applications were evaluated and a 2D MEMS based scanning lidar system was designed using off-the shelf components.

Finally, a range of experiments and tests were completed to evaluate the performance of each sub-component of the lidar sensor prototype. A major portion of the testing was done to align the optics of the system and to ensure maximum field of view overlap for the bi-static laser sensor. As a laser range finder, the system demonstrated capabilities to detect hard targets as far as 32 meters. Time to digital converter (TDC) and an analog to digital converter (ADC) was used for providing accurate timing solutions for the lidar prototype. A Matlab lidar model was built and used to perform trade-off studies that helped choosing components to suit the sensor design specifications.

The size, weight and cost of these lidar sensors are still very high and thus making it harder for automotive manufacturers to integrate these sensors into their vehicles. Ongoing research in this field is determined to find a solution that guarantees very high performance in real time and lower its cost over the next decade as components get cheaper and can be seamlessly integrated with cars to improve on-road safety.
ContributorsBhaskaran, Sreevatsan (Author) / Calhoun, Ronald J (Thesis advisor) / Dahm, Werner (Committee member) / Huang, Huei-Ping (Committee member) / Chen, Kang Pin (Committee member) / Choukulkar, Aditya (Committee member) / Arizona State University (Publisher)
Created2018
136525-Thumbnail Image.png
Description
The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two

The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two spool gas turbine engine. The code was then compared to an ideal case engine with predictable values. It was found to have less than a 3 percent error for these parameters, which included optimal net work produced, optimal overall pressure ratio, and maximum pressure ratio. The modeling system was then run through a parametric analysis. In the first case, the bypass ratio was set to 0 and the freestream Mach number was set to 0. The second case was with a bypass ratio of 0 and fresstream Mach number of 0.85. The third case was with a bypass ratio of 5 and freestream Mach number of 0. The fourth case was with a bypass ratio of 5 and fresstream Mach number of 0.85. Each of these cases was run at various overall pressure ratios and maximum Temperatures of 1500 K, 1600 K and 1700 K. The results modeled the behavior that was expected. As the freestream Mach number was increased, the thrust decreased and the thrust specific fuel consumption increased, corresponding to an increase in total pressure at the combustor inlet. It was also found that the thrust was increased and the thrust specific fuel consumption decreased as the bypass ratio was increased. These results also make sense as there is less airflow passing through the engine core. Finally the engine was compared to two real engines. Both of which are General Electric G6 series engines. For the 80C2A3 engine, the percent difference between thrust and thrust specific fuel consumption was less than five percent. For the 50B, the thrust was below a two percent difference, but the thrust specific fuel consumption clearly provided inaccurate results. This could be caused by the lack of inputs provided by General Electric. The amount of fuel injected is largely dependent on the maximum temperature which is not available to the public. Overall, the code produces comparable results to real engines and can display how isolating and modifying a certain parameter effects engine performance.
ContributorsCook, Rachel Nicole (Author) / Dahm, Werner (Thesis director) / Lee, Taewoo (Committee member) / Wells, Valana (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
134487-Thumbnail Image.png
Description
Monatomic gases are ideal working mediums for Brayton cycle systems due to their favorable thermodynamic properties. Closed Brayton cycle systems make use of these monatomic gases to increase system performance and thermal efficiency. Open Brayton cycles, on the other hand, operate with primarily diatomic and polyatomic gases from air and

Monatomic gases are ideal working mediums for Brayton cycle systems due to their favorable thermodynamic properties. Closed Brayton cycle systems make use of these monatomic gases to increase system performance and thermal efficiency. Open Brayton cycles, on the other hand, operate with primarily diatomic and polyatomic gases from air and combustion products, which have less favorable properties. The focus of this study is to determine if monatomic gases can be utilized in an open Brayton cycle system, in a way that increases the overall performance, but is still cost effective.
Two variations on open cycle Brayton systems were analyzed, consisting of an “airborne” thrust producing propulsion system, and a “ground-based” power generation system. Both of these systems have some mole fraction of He, Ne, or Ar injected into the flow path at the inlet, and some fraction of monatomic gas recuperated and at the nozzle exit to be re-circulated through the system. This creates a working medium of an air-monatomic gas mixture before the combustor, and a combustion products-monatomic gas mixture after combustor. The system’s specific compressor work, specific turbine work, specific net power output, and thermal efficiency were analyzed for each case. The most dominant metric for performance is the thermal efficiency (η_sys), which showed a significant increase as the mole fraction of monatomic gas increased for all three gas types. With a mole fraction of 0.15, there was a 2-2.5% increase in the airborne system, and a 1.75% increase of the ground-based system. This confirms that “spiking” any open Brayton system with monatomic gas will lead to an increase in performance. Additionally, both systems showed an increase in compressor and turbine work for a set temperature difference with He and Ne, which can additionally lead to longer component lifecycles with less frequent maintenance checks.
The cost analysis essentially compares the operating cost of a standard system with the operating cost of the monatomic gas “spiked” system, while keeping the internal mass flow rate and total power output the same. This savings is denoted as a percent of the standard system with %NCS. This metric lumps the cost ratio of the monatomic gas and fuel (MGC/FC) with the fraction of recuperated monatomic gas (RF) into an effective cost ratio that represents the cost per second of monatomic gas injected into the system. Without recuperation, the results showed there is no mole fraction of any monatomic gas type that yields a positive %NCS for a reasonable range of current MGC/FC values. Integrating recuperation machinery in an airborne system is hugely impractical, effectively meaning that the use of monatomic gas in this case is not feasible. For a ground-based system on the other hand, recuperation is much more practical. The ground-based system showed that a RF value of at least 50% for He, 89% for Ne, and 94% for Ar is needed for positive savings. This shows that monatomic gas could theoretically be used cost effectively in a ground-based, power-generating open Brayton system. With an injected monatomic gas mole fraction of 0.15, and full 100% recuperation, there is a net cost savings of about 3.75% in this ground-based system.
ContributorsBernaud, Ryan Clark (Author) / Dahm, Werner (Thesis director) / Wells, Valana (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133543-Thumbnail Image.png
Description
This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and optimizing a gridded ion thruster. It also identifies operational limits

This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and optimizing a gridded ion thruster. It also identifies operational limits that may be associated with solar-powered ion propulsion systems and posits plausible solutions or alternatives to remedy such limitations. These topics are presented with the intent of reviewing how ion propulsion technology evolved in its journey to develop to today's systems, and to facilitate thought and discussion on where further development of ion propulsion systems can be directed.
ContributorsTang, Justine (Author) / White, Daniel (Thesis director) / Dahm, Werner (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155783-Thumbnail Image.png
Description
The aerospike nozzle belongs to the class of altitude compensating nozzles making it a strong candidate for Space Shuttle Main Engines. Owing to their higher efficiency compared to conventional bell nozzles, the aerospike nozzles are being studied extensively and are being used for many Single State to Orbit (SSTO) designs.

The aerospike nozzle belongs to the class of altitude compensating nozzles making it a strong candidate for Space Shuttle Main Engines. Owing to their higher efficiency compared to conventional bell nozzles, the aerospike nozzles are being studied extensively and are being used for many Single State to Orbit (SSTO) designs. A rocket engine nozzle with altitude compensation, such as the aerospike, consumes less fuel than a rocket engine with a bell nozzle. Aerospike nozzles are huge and are often difficult to construct and have to be truncated in order to make them feasible for application in a rocket propulsion system. Consequently, truncation of the aerospike leads to pressure loss under the base, which in-turn decreases the overall thrust produced by the rocket nozzle. To overcome this loss, a technique called base bleed is implemented in which a secondary jet is made to flow through the base of the truncated portion. This thesis uses dynamic pressure contour plots to find out the ideal base bleed mass flow rate to avoid base recirculation in 10 %, 20 % and 30 % truncated aerospike nozzles.
ContributorsNagarajan, Venkatraman (Author) / White, Daniel B (Thesis advisor) / Dahm, Werner (Thesis advisor) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2017
155309-Thumbnail Image.png
Description
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm

Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars.

Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona’s Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
ContributorsCherukuru, Nihanth Wagmi (Author) / Calhoun, Ronald (Thesis advisor) / Newsom, Rob (Committee member) / Huang, Huei Ping (Committee member) / Chen, Kangping (Committee member) / Dahm, Werner (Committee member) / Arizona State University (Publisher)
Created2017
135768-Thumbnail Image.png
Description
One of the leading concerns regarding the commercial and military applications of rotary wing powered vehicles is the issue of blade-vortex interaction (BVI) noise occurring during forward descent. This impulsive noise-generating phenomenon occurs due to the close proximity and interference between the main rotor blades and the wake vortices generated

One of the leading concerns regarding the commercial and military applications of rotary wing powered vehicles is the issue of blade-vortex interaction (BVI) noise occurring during forward descent. This impulsive noise-generating phenomenon occurs due to the close proximity and interference between the main rotor blades and the wake vortices generated by the rotor blades from previous revolutions. Throughout the descent phase of a helicopter in forward flight, the rotating blades pass through these induced vortices, thus generating an impulsive "slap" noise that is characteristic of the common sound associated with helicopter flight among the general population. Therefore, parameterization of the variables of interest that affect BVI noise generation will allow for thorough analysis of the origins of the noise and open pathways for innovation that may offer significant improvements in acoustic performance. Gaining an understanding of the factors that govern the intensity of the BVI acoustic signature provides a strong analytical and experimental basis for enhanced rotor blade design.
ContributorsAhlf, Rick James (Author) / Dahm, Werner (Thesis director) / Wells, Valana (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05