Matching Items (41)
151984-Thumbnail Image.png
Description
There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions

There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions such as overall water splitting and the identification of efficient and effective semiconductor materials. To this end, the search for novel semiconductors that can act as light absorbers is still needed. The copper hydroxyphosphate mineral libethenite (CHP), which has a chemical formula of Cu2(OH)PO4, has been recently shown to be active for photocatalytic degradation of methylene blue under UV-–irradiation, indicating that photo-excited electrons and holes can effectively be generated and separated in this material. However, CHP has not been well studied and many of its fundamental electrochemical and photoelectrochemical properties are still unknown. In this work, the synthesis of different morphologies of CHP using hydrothermal synthesis and precipitation methods were explored. Additionally, a preliminary investigation of the relevant fundamental characteristics such as the bandgap, flatband potential, band diagram, electrochemical and photoelectrochemical properties for CHP was performed. Better understanding of the properties of this material may lead to the development of improved catalysts and photocatalysts from natural sources.
ContributorsLi, Man (Author) / Chan, Candace K. (Thesis advisor) / O'Connell, Michael (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2013
151834-Thumbnail Image.png
Description
Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may

Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may identify environmentally problematic processes and supply chain components before large investments contribute to technology lock in, and thereby promote integration of environmental concerns into technology development and scale-up (enviro-technical integration). However, application of LCA to nanotechnology is problematic due to limitations in LCA methods (e.g., reliance on data from existing industries at scale, ambiguity regarding proper boundary selection), and because social drivers of technology development and environmental preservation are not identified in LCA. This thesis proposes two methodological advances that augment current capabilities of LCA by incorporating knowledge from technical and social domains. Specifically, this thesis advances the capacity for LCA to yield enviro-technical integration through inclusion of scenario development, thermodynamic modeling, and use-phase performance bounding to overcome the paucity of data describing emerging nanotechnologies. With regard to socio-technical integration, this thesis demonstrates that social values are implicit in LCA, and explores the extent to which these values impact LCA practice and results. There are numerous paths of entry through which social values are contained in LCA, for example functional unit selection, impact category selection, and system boundary definition - decisions which embody particular values and determine LCA results. Explicit identification of how social values are embedded in LCA promotes integration of social and environmental concerns into technology development (socio-enviro-technical integration), and may contribute to the development of socially-responsive and environmentally preferable nanotechnologies. In this way, tailoring LCA to promote socio-enviro-technical integration is a tangible and meaningful step towards responsible innovation processes.
ContributorsWender, Ben A. (Author) / Seager, Thomas P (Thesis advisor) / Crozier, Peter (Committee member) / Fraser, Matthew (Committee member) / Guston, David (Committee member) / Arizona State University (Publisher)
Created2013
152520-Thumbnail Image.png
Description
High temperature CO2 perm-selective membranes offer potential for uses in various processes for CO2 separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase membranes. The membranes provide selective permeation to CO2 and exhibit high permeation flux at high temperature. Research on transport mechanism demonstrates that gas transport for

High temperature CO2 perm-selective membranes offer potential for uses in various processes for CO2 separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase membranes. The membranes provide selective permeation to CO2 and exhibit high permeation flux at high temperature. Research on transport mechanism demonstrates that gas transport for ceramic-carbonate dual-phase membrane is rate limited by ion transport in ceramic support. Reducing membrane thickness proves effective to improve permeation flux. This dissertation reports strategy to prepare thin ceramic-carbonate dual-phase membranes to increase CO2 permeance. The work also presents characteristics and gas permeation properties of the membranes. Thin ceramic-carbonate dual-phase membrane was constructed with an asymmetric porous support consisting of a thin small-pore ionic conducting ceramic top-layer and a large pore base support. The base support must be carbonate non-wettable to ensure formation of supported dense, thin membrane. Macroporous yttria-stabilized zirconia (YSZ) layer was prepared on large pore Bi1.5Y0.3Sm0.2O3-δ (BYS) base support using suspension coating method. Thin YSZ-carbonate dual-phase membrane (d-YSZ/BYS) was prepared via direct infiltrating Li/Na/K carbonate mixtures into top YSZ layers. The thin membrane of 10 μm thick offered a CO2 flux 5-10 times higher than the thick dual-phase membranes. Ce0.8Sm0.2O1.9 (SDC) exhibited highest CO2 flux and long-term stability and was chosen as ceramic support for membrane performance improvement. Porous SDC layers were co-pressed on base supports using SDC and BYS powder mixtures which provided better sintering comparability and carbonate non-wettability. Thin SDC-carbonate dual-phase membrane (d-SDC/SDC60BYS40) of 150 μm thick was synthesized on SDC60BYS40. CO2 permeation flux for d-SDC/SDC60BYS40 exhibited increasing dependence on temperature and partial pressure gradient. The flux was higher than other SDC-based dual-phase membranes. Reducing membrane thickness proves effective to increase CO2 permeation flux for the dual-phase membrane.
ContributorsLu, Bo (Author) / Lin, Yuesheng (Thesis advisor) / Crozier, Peter (Committee member) / Herrmann, Macus (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2014
152328-Thumbnail Image.png
Description
Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the

Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown that capacities comparable to graphite can be obtained for up to 10 cycles and lower capacities can be obtained for up to 20 cycles. Unlike bulk silicon, the clathrate structure does not undergo excessive volume change upon lithium intercalation, and therefore, the crystal structure is morphologically stable over many cycles. X-ray diffraction of the clathrate after cycling showed that crystallinity is intact, indicating that the clathrate does not collapse during reversible intercalation with lithium ions. Electrochemical potential spectroscopy obtained from the cycling data showed that there is an absence of formation of lithium-silicide, which is the product of lithium alloying with diamond cubic silicon. Type II silicon clathrate, NaxSi136, consists of silicon making up the framework structure and sodium (guest) atoms occupying the interstitial spaces. These clathrates showed very high capacities during their first intercalation cycle, in the range of 3,500 mAh/g, but then deteriorated during subsequent cycles. X-ray diffraction after one cycle showed the absence of clathrate phase and the presence of lithium-silicide, indicating the disintegration of clathrate structure. This could explain the silicon-like cycling behavior of Type II clathrates.
ContributorsRaghavan, Rahul (Author) / Chan, Candace K. (Thesis advisor) / Crozier, Peter (Committee member) / Petuskey, William T (Committee member) / Arizona State University (Publisher)
Created2013
153292-Thumbnail Image.png
Description
Biogenic silica nanostructures, derived from diatoms, possess highly ordered porous hierarchical nanostructures and afford flexibility in design in large part due to the availability of a great variety of shapes, sizes, and symmetries. These advantages have been exploited for study of transport phenomena of ions and molecules towards the goal

Biogenic silica nanostructures, derived from diatoms, possess highly ordered porous hierarchical nanostructures and afford flexibility in design in large part due to the availability of a great variety of shapes, sizes, and symmetries. These advantages have been exploited for study of transport phenomena of ions and molecules towards the goal of developing ultrasensitive and selective filters and biosensors. Diatom frustules give researchers many inspiration and ideas for the design and production of novel nanostructured materials. In this doctoral research will focus on the following three aspects of biogenic silica: 1) Using diatom frustule as protein sensor. 2) Using diatom nanostructures as template to fabricate nano metal materials. 3) Using diatom nanostructures to fabricate hybrid platform.

Nanoscale confinement biogenetic silica template-based electrical biosensor assay offers the user the ability to detect and quantify the biomolecules. Diatoms have been demonstrated as part of a sensor. The sensor works on the principle of electrochemical impedance spectroscopy. When specific protein biomarkers from a test sample bind to corresponding antibodies conjugated to the surface of the gold surface at the base of each nanowell, a perturbation of electrical double layer occurs resulting in a change in the impedance.

Diatoms are also a new source of inspiration for the design and fabrication of nanostructured materials. Template-directed deposition within cylindrical nanopores of a porous membrane represents an attractive and reproducible approach for preparing metal nanopatterns or nanorods of a variety of aspect ratios. The nanopatterns fabricated from diatom have the potential of the metal-enhanced fluorescence to detect dye-conjugated molecules.

Another approach presents a platform integrating biogenic silica nanostructures with micromachined silicon substrates in a micro
ano hybrid device. In this study, one can take advantages of the unique properties of a marine diatom that exhibits nanopores on the order of 40 nm in diameter and a hierarchical structure. This device can be used to several applications, such as nano particles separation and detection. This platform is also a good substrate to study cell growth that one can observe the reaction of cell growing on the nanostructure of frustule.
ContributorsLin, Kai-Chun (Author) / Ramakrishna, B.L. (Thesis advisor) / Goryll, Michael (Thesis advisor) / Dey, Sandwip (Committee member) / Prasad, Shalini (Committee member) / Arizona State University (Publisher)
Created2014
150393-Thumbnail Image.png
Description
ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D

ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D GB network to look into the effects of GB characteristics on this phenomenon, with emphasis on conditions that can lead to percolation. A finite element model was created based on the microstructure of a depleted UO2 sample characterized by Electron Backscattering Diffraction (EBSD). The GBs were categorized into high (D2), low (D1) and bulk diffusivity (Dbulk) based on their misorientation angles and Coincident Site Lattice (CSL) types. The simulation was run using different diffusivity ratios (D2/Dbulk) ranging from 1 to 10^8. The model was set up in three ways: constant temperature case, temperature gradient effects and window methods that mimic the environments in a Light Water Reactor (LWR). In general, the formation of percolation paths was observed at a ratio higher than 10^4 in the measured GB network, which had a 68% fraction of high diffusivity GBs. The presence of temperature gradient created an uneven concentration distribution and decreased the overall mass flux. Finally, radial temperature and fission gas concentration profiles were obtained for a fuel pellet in operation using an approximate 1-D model. The 100 µm long microstructurally explicit model was used to simulate, to the scale of a real UO2 pellet, the mass transport at different radial positions, with boundary conditions obtained from the profiles. Stronger percolation effects were observed at the intermediate and periphery position of the pellet. The results also showed that highest mass flux happens at the edge of a pellet at steady state to accommodate for the sharp concentration drop.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Dey, Sandwip (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150397-Thumbnail Image.png
Description
The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to

The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to perform the basic nanoscale characterization of the anode materials, but also to observe in real-time, the dynamic changes in the anode material under near-reaction conditions. The earlier part of this dissertation is focused on the synthesis and characterization of Pr- and Gd-doped cerium oxide anode materials. A novel spray drying set-up was designed and constructed for preparing nanoparticles of these mixed-oxides and nickel oxide for anode fabrication. X-ray powder diffraction was used to investigate the crystal structure and lattice parameters of the synthesized materials. Particle size distribution, morphology and chemical composition were investigated using transmission electron microscope (TEM). The nanoparticles were found to possess pit-like defects of average size 2 nm after subjecting the spray-dried material to heat treatment at 700 °C for 2 h in air. A novel electron energy-loss spectroscopy (EELS) quantification technique for determining the Pr and Gd concentrations in the mixed oxides was developed. Nano-scale compositional heterogeneity was observed in these materials. The later part of the dissertation focuses mainly on in situ investigations of the anode materials under a H2 environment in the ETEM. Nano-scale changes in the stand-alone ceramic components of the cermet anode were first investigated. Particle size and composition of the individual nanoparticles of Pr-doped ceria (PDC) were found to affect their reducibility in H2 gas. Upon reduction, amorphization of the nanoparticles was observed and was linked to the presence of pit-like defects in the spray-dried material. Investigation of metal-ceramic interactions in the Ni-loaded PDC nanoparticles indicated a localized reduction of Ce in the vicinity of the Ni/PDC interface at 420 °C. Formation of a reduction zone around the interface was attributed to H spillover which was observed directly in the ETEM. Preliminary results on the fabrication of model SOFCs and in situ behavior of Ni/Gd-doped ceria anodes have been presented.
ContributorsSharma, Vaneet (Author) / Crozier, Peter A. (Thesis advisor) / Sharma, Renu (Thesis advisor) / Adams, James B (Committee member) / Dey, Sandwip (Committee member) / Arizona State University (Publisher)
Created2011
150354-Thumbnail Image.png
Description
There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued

There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued copper thin film growth in ultra-high vacuum after adsorption of a sub-monolayer quantity of oxygen. Results showed an increase in compressive stress generation, and theory was proposed to explain the additional compressive stress within the films. The second system explored was the adsorption of carbon monoxide on the platinum {111} surface in vacuum. The experiments displayed a correlation between known structural developments in the adsorbed carbon monoxide adlayer and the surface stress state of the system. The third system consisted of the growth and annealing stresses of ice thin films at cryogenic temperatures in vacuum. It was shown that the growth stresses are clearly linked to known morphology development from literature, with crystalline ice developing compressive and amorphous ice developing tensile stresses respectively, and that amorphous ice films develop additional tensile stresses upon annealing.
ContributorsKennedy, Jordan (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2011
149710-Thumbnail Image.png
Description
Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive,

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.
ContributorsAnwar, Shahriar (Author) / Adams, James B (Thesis advisor) / Crozier, Peter (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150645-Thumbnail Image.png
Description
This work focuses on simulation of electrical resistivity and optical behaviors of thin films, where an Ag or Au thin layer is embedded in zinc oxide. Enhanced conductivity and transparency were earlier achieved with multilayer structured transparent conducting oxide (TCO) sandwich layer with metal (TCO/metal/TCO). Sputtering pattern of metal layer

This work focuses on simulation of electrical resistivity and optical behaviors of thin films, where an Ag or Au thin layer is embedded in zinc oxide. Enhanced conductivity and transparency were earlier achieved with multilayer structured transparent conducting oxide (TCO) sandwich layer with metal (TCO/metal/TCO). Sputtering pattern of metal layer is simulated to obtain the morphology, covered area fraction, and the percolation strength. The resistivity as a function of the metal layer thickness fits the modeled trend of covered area fraction beyond the percolation threshold. This result not only presents the robustness of the simulation, but also demonstrates the influence of metal morphology in multilayer structure. Effective medium coefficients are defined from the coverage and percolation strength to obtain simulated optical transmittance which matches experimental observation. The coherence of resistivity and optical transmittance validates the simulation of the sputtered pattern and the incorporation of percolation theory in the model.
ContributorsFang, Chia-Ling (Author) / Alford, Terry L. (Thesis advisor) / Crozier, Peter (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2012