Matching Items (2)
189368-Thumbnail Image.png
Description
The origin of life remains unknowable to current science. Scientists cannot see into the origin of life on Earth, and until humanity discovers life elsewhere in the universe and begin to compare this alien life to Earth, it is likely to be undiscoverable. However, alien life may be so different

The origin of life remains unknowable to current science. Scientists cannot see into the origin of life on Earth, and until humanity discovers life elsewhere in the universe and begin to compare this alien life to Earth, it is likely to be undiscoverable. However, alien life may be so different from life as it is currently known that it may not be recognizable when it is found. Therefore, astrobiology needs a universal theory for life to avoid detection methods being biased towards Earth-based life. This also extends to the instrumentation sent into space, which should be built to detect universal properties of life. Assembly theory, a novel measure of complexity and arguably the only testable agnostic biosignature in current science, is used here to provide precision requirements for mass spectrometry instrumentation on future spaceflight missions with the goal of finding life elsewhere. Universal properties are not only applicable to the origins of life, but also to technologically advanced societies. Predictable patterns are found in today’s industrially based society, such as energy usage as a function of population density. These patterns may serve as the basis for technosignatures that are evidence of advanced extraterrestrial civilizations. Patters found in patent chemistry are explored, as well as predictions of chemical complexity based on assembly theory, to determine how complex chemistry is built by human society and which statistical patterns may be found in extraterrestrial civilizations. Moving beyond astrobiology, science cannot be done in a vacuum but must be communicated and taught to others. Topics such as a universal definition of life, biosignatures, and increasing complexity mean nothing without interest and engagement from others, particularly students. To this end, transformative pedagogical tools are used, particularly sociotransformative constructivism (sTc), to build and teach an Earth Science and Astrobiology curriculum to a classroom of high school incarcerated students. The impact of this class on their science learning and how they personally identify as scientists is studied.
ContributorsMalloy, John (Author) / Walker, Sara (Thesis advisor) / Reano, Darryl (Committee member) / Hartnett, Hilairy (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Cronin, Leroy (Committee member) / Arizona State University (Publisher)
Created2023
128928-Thumbnail Image.png
Description

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport.

ContributorsCereda, Angelo (Author) / Hitchcock, Andrew (Author) / Symes, Mark D. (Author) / Cronin, Leroy (Author) / Bibby, Thomas S. (Author) / Jones, Anne (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-03-17