Matching Items (2)
187427-Thumbnail Image.png
Description
The continued rise of temperatures and extreme heat events globally is contributing to increases in mortality and morbidity in every region of the world. Urban areas are experiencing the combined effects of anthropogenic climate change and the urban heat island effect, exacerbating the risks associated with heat for urban residents.

The continued rise of temperatures and extreme heat events globally is contributing to increases in mortality and morbidity in every region of the world. Urban areas are experiencing the combined effects of anthropogenic climate change and the urban heat island effect, exacerbating the risks associated with heat for urban residents. In response, cities must make every effort to adapt, pursuing engagement in high-quality planning processes and implementing robust sets of strategies to mitigate and manage the heat. Cities are shaped by networks of plans, however, the process of systematically evaluating these plans has focused on individual plans or plan types when assessing their quality. This study combines qualitative plan quality evaluation and semi-structured interviews to assess how Vienna’s network of plans addresses heat. Two clear divides emerge when analyzing the plan network; direction-setting principles are included more often than others, and mitigation strategies are more prevalent than management strategies. These results, which are consistent across the broader plan quality evaluation literature, illuminate a clear path for Vienna to continuously improve their planning process and effectively respond to heat.
ContributorsLeyba, Bryan (Author) / Meerow, Sara (Thesis advisor) / Damyanovic, Doris (Committee member) / Hondula, David (Committee member) / Arizona State University (Publisher)
Created2023
131596-Thumbnail Image.png
Description

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their importance to the pedestrian landscape. With that in mind, the research question for the study is: how does the microclimate of a densifying urban core affect thermal comfort in plazas at different times of the year? Based on the data, I argue that plazas in downtown Tempe are not maximally predisposed to pedestrian thermal comfort in the summer or the fall. Thus, the proposed intervention to improve thermal comfort in downtown Tempe’s plazas is the implementation of decision support tools focused on education, community engagement, and thoughtful building designs for heat safety.

ContributorsCox, Nicole (Author) / Redman, Charles (Thesis director) / Hondula, David M. (Committee member) / School of Social Transformation (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05