Matching Items (5)

127952-Thumbnail Image.png

Building Better Bridges into STEM: A Synthesis of 25 Years of Literature on STEM Summer Bridge Programs

Description

Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of

Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of the rigorous content and lower student persistence in college STEM compared with other disciplines. However, to our knowledge, a comprehensive review of STEM summer bridge programs does not exist. To provide a resource for bridge program developers, we conducted a systematic review of the literature on STEM summer bridge programs. We identified 46 published reports on 30 unique STEM bridge programs that have been published over the past 25 years. In this review, we report the goals of each bridge program and whether the program was successful in meeting these goals. We identify 14 distinct bridge program goals that can be organized into three categories: academic success goals, psychosocial goals, and department-level goals. Building on the findings of published bridge reports, we present a set of recommendations for STEM bridge programs in hopes of developing better bridges into college.

Contributors

Agent

Created

Date Created
  • 2017-12-01

134485-Thumbnail Image.png

Increased interactions in active learning biology classrooms: Exploring the impact of instructors using student names and student academic self-concept

Description

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that instructors know their names, the importance of instructors knowing their names, and how instructors learned their names. We found that, while only 20% of students perceived their names were known in previous high-enrollment biology classes, 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Using grounded theory, we identified nine reasons why students feel that having their names known is important. When we asked students how they perceived instructors learned their names, the most common response was instructor use of name tents during in-class discussion. These findings suggest that students can benefit from perceiving that instructors know their names and name tents could be a relatively easy way for students to think that instructors know their names. Academic self-concept is one's perception of his or her ability in an academic domain compared to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to students in the class. Student characteristics, such as gender and race/ethnicity, can impact the level of academic self-concept, however this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of a college physiology course. Using a survey, students self-reported how smart they perceived themselves in the context of physiology compared to the whole class and compared to the student they worked most closely with in class. Using logistic regression, we found that males and native English speakers had significantly higher academic self-concept compared to the whole class compared with females and non-native English speakers, respectively. We also found that males and non-transfer students had significantly higher academic self-concept compared to the student they worked most closely with in class compared with females and transfer students, respectively. Using grounded theory, we identified ten distinct factors that influenced how students determined whether they are more or less smart than their groupmate. Finally, we found that students were more likely to report participating less than their groupmate if they had a lower academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small group discussion.

Contributors

Agent

Created

Date Created
  • 2017-05

135232-Thumbnail Image.png

Student Conceptions of Collaboration within and between CUREs: An Investigative Analysis

Description

Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a

Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is of interest to the greater biology community. While CUREs have been championed as a way to provide more students with the opportunity to experience, it is unclear whether students benefit differently from participating in different CURE with different structural elements. In this study we focused in on one proposed element of a CURE, collaboration, to determine whether student's perception of this concept change over the course of a CURE and whether it differs among students enrolled in different CUREs. We analyzed pre and post open-ended surveys asking the question "Why might collaboration be important in science?" in two CUREs with different structures of collaboration. We also compared CURE student responses to the responses of senior honors thesis students who had been conducting authentic research. Five themes emerged in response to students' conceptions of collaboration. Comparing two CURE courses, we found that students' conceptions of collaboration were varied within each individual CURE, as well as what students were leaving with compared to the other CURE course. Looking at how student responses compared between 5 different themes, including "Different Perspectives", "Validate/Verify Results", "Compare Results", "Requires Different Expertise", and "Compare results", students appeared to be thinking about collaboration in distinct different ways by lack of continuity in the amount of students discussing each of these among the classes. In addition, we found that student responses in each of the CURE courses were not significantly different for any of the themes except "Different Expertise" compared to the graduating seniors. However, due to the small (n) that the graduating seniors group had, 22, compared to each of the CURE classes composing of 155 and 98 students, this comparison must be taken in a preliminary manner. Overall, students thought differently about collaboration between different CUREs. Still, a gap filling what it means to "collaborate", and whether the structures of CUREs are effective to portray collaboration are still necessary to fully elaborate on this paper's findings.

Contributors

Agent

Created

Date Created
  • 2016-05

Student Perceptions of Bioethics Instruction: Effects of Gender, Politics, and Religion

Description

Bioethics is an important aspect of the core competency of biology of understanding the relationship between science and society, but because of the controversial nature of the topics covered in

Bioethics is an important aspect of the core competency of biology of understanding the relationship between science and society, but because of the controversial nature of the topics covered in bioethics courses, different groups of students may experience identity conflicts or discomfort when learning about them. However, no previous studies have investigated the impact of undergraduate bioethics students’ experiences in bioethics courses on their opinions and comfort. To fill this gap in knowledge, we investigated undergraduate bioethics students’ attitudes about and comfort when learning abortion, gene editing, and physician assisted suicide, as well as how their gender, religious, and political identity influence their attitudes and changes in their attitudes after instruction. We found that religious students were less supportive of gene editing, abortion, and physician assisted suicide than nonreligious students, non-liberal students were less supportive of abortion and physician assisted suicide than liberal students, and women were less supportive of abortion than men. Additionally, we found that religious students were less comfortable than nonreligious students when learning about gene editing, abortion, and physician assisted suicide, and non-liberal students were less comfortable than liberal students when learning about abortion. When asked how their comfort could have been improved, those who felt that their peers or instructors could have done something to increase their comfort most commonly cited that including additional unbiased materials or incorporating materials and discussions that cover both sides of every controversial issue would have helped them to feel more comfortable when learning about gene editing, abortion, and physician assisted suicide. Finally, we found that students who were less comfortable learning about abortion and physician assisted suicide were less likely to participate in discussions regarding those topics. Our findings show that students in different groups not only tend to have different support for controversial topics like gene editing, abortion, and physician assisted suicide, but they also feel differentially comfortable when learning about them, which in turn impacts their participation. We hope that this work helps instructors to recognize the importance of their students’ comfort to their learning in bioethics courses, and from this study, they can take away the knowledge that students feel their comfort could be most improved by the incorporation of additional inclusive materials and course discussions regarding the controversial topics covered in the course.

Contributors

Agent

Created

Date Created
  • 2021-05

128360-Thumbnail Image.png

Define Your Goals Before You Design a CURE: A Call to Use Backward Design in Planning Course-Based Undergraduate Research Experiences

Description

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course design challenge, as the dual nature of these courses requires course designers to consider two distinct, but complementary, sets of goals for the CURE: 1) scientific discovery milestones (i.e., research goals) and 2) student learning in cognitive, psychomotor, and affective domains (i.e., pedagogical goals). As more undergraduate laboratory courses are re-imagined as CUREs, how do we thoughtfully design these courses to effectively meet both sets of goals? In this Perspectives article, we explore this question and outline recommendations for using backward design in CURE development.

Contributors

Agent

Created

Date Created
  • 2017-05-26