Matching Items (645)
154073-Thumbnail Image.png
Description
Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given the necessity of human-robot teams, it has been long assumed that for the robotic agent to be an effective team member, it must be equipped with automated planning technologies that helps in achieving the goals that have been delegated to it by their human teammates as well as in deducing its own goal to proactively support its human counterpart by inferring their goals. However there has not been any systematic evaluation on the accuracy of this claim.

In my thesis, I perform human factors analysis on effectiveness of such automated planning technologies for remote human-robot teaming. In the first part of my study, I perform an investigation on effectiveness of automated planning in remote human-robot teaming scenarios. In the second part of my study, I perform an investigation on effectiveness of a proactive robot assistant in remote human-robot teaming scenarios.

Both investigations are conducted in a simulated urban search and rescue (USAR) scenario where the human-robot teams are deployed during early phases of an emergency response to explore all areas of the disaster scene. I evaluate through both the studies, how effective is automated planning technology in helping the human-robot teams move closer to human-human teams. I utilize both objective measures (like accuracy and time spent on primary and secondary tasks, Robot Attention Demand, etc.) and a set of subjective Likert-scale questions (on situation awareness, immediacy etc.) to investigate the trade-offs between different types of remote human-robot teams. The results from both the studies seem to suggest that intelligent robots with automated planning capability and proactive support ability is welcomed in general.
ContributorsNarayanan, Vignesh (Author) / Kambhampati, Subbarao (Thesis advisor) / Zhang, Yu (Thesis advisor) / Cooke, Nancy J. (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
156044-Thumbnail Image.png
Description
In a collaborative environment where multiple robots and human beings are expected

to collaborate to perform a task, it becomes essential for a robot to be aware of multiple

agents working in its work environment. A robot must also learn to adapt to

different agents in the workspace and conduct its interaction based

In a collaborative environment where multiple robots and human beings are expected

to collaborate to perform a task, it becomes essential for a robot to be aware of multiple

agents working in its work environment. A robot must also learn to adapt to

different agents in the workspace and conduct its interaction based on the presence

of these agents. A theoretical framework was introduced which performs interaction

learning from demonstrations in a two-agent work environment, and it is called

Interaction Primitives.

This document is an in-depth description of the new state of the art Python

Framework for Interaction Primitives between two agents in a single as well as multiple

task work environment and extension of the original framework in a work environment

with multiple agents doing a single task. The original theory of Interaction

Primitives has been extended to create a framework which will capture correlation

between more than two agents while performing a single task. The new state of the

art Python framework is an intuitive, generic, easy to install and easy to use python

library which can be applied to use the Interaction Primitives framework in a work

environment. This library was tested in simulated environments and controlled laboratory

environment. The results and benchmarks of this library are available in the

related sections of this document.
ContributorsKumar, Ashish, M.S (Author) / Amor, Hani Ben (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2017
156291-Thumbnail Image.png
Description
Research literature was reviewed to find recommended tools and technologies for operating Unmanned Aerial Systems (UAS) fleets in an urban environment. However, restrictive legislation prohibits fully autonomous flight without an operator. Existing literature covers considerations for operating UAS fleets in a controlled environment, with an emphasis on the effect different

Research literature was reviewed to find recommended tools and technologies for operating Unmanned Aerial Systems (UAS) fleets in an urban environment. However, restrictive legislation prohibits fully autonomous flight without an operator. Existing literature covers considerations for operating UAS fleets in a controlled environment, with an emphasis on the effect different networking approaches have on the topology of the UAS network. The primary network topology used to implement UAS communications is 802.11 protocols, which can transmit telemetry and a video stream using off the shelf hardware. Other implementations use low-frequency radios for long distance communication, or higher latency 4G LTE modems to access existing network infrastructure. However, a gap remains testing different network topologies outside of a controlled environment.

With the correct permits in place, further research can explore how different UAS network topologies behave in an urban environment when implemented with off the shelf UAS hardware. In addition to testing different network topologies, this thesis covers the implementation of building a secure, scalable system using modern cloud computation tools and services capable of supporting a variable number of UAS. The system also supports the end-to-end simulation of the system considering factors such as battery life and realistic UAS kinematics. The implementation of the system leads to new findings needed to deploy UAS fleets in urban environments.
ContributorsD'Souza, Daniel (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2018
156887-Thumbnail Image.png
Description
Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading.

To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time.

Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists.

Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.
ContributorsCao, Jun (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Zhang, Yu (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2018
157202-Thumbnail Image.png
Description
In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on an extensive suite of challenging navigation planning problems. This work shows that critical areas of an environment are learnable, and can be used by Learn and Link to solve MP problems with far less planning time than existing sampling-based planners.
ContributorsMolina, Daniel, M.S (Author) / Srivastava, Siddharth (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019
157016-Thumbnail Image.png
Description
A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware"

A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of human-awareness manifest themselves in the scope of planning or sequential decision making with humans in the loop. To this end, I will show (1) how the AI agent can leverage the human task model to generate symbiotic behavior; and (2) how the introduction of the human mental model in the deliberative process of the AI agent allows it to generate explanations for a plan or resort to explicable plans when explanations are not desired. The latter is in addition to traditional notions of human-aware planning which typically use the human task model alone and thus enables a new suite of capabilities of a human-aware AI agent. Finally, I will explore how the AI agent can leverage emerging mixed-reality interfaces to realize effective channels of communication with the human in the loop.
ContributorsChakraborti, Tathagata (Author) / Kambhampati, Subbarao (Thesis advisor) / Talamadupula, Kartik (Committee member) / Scheutz, Matthias (Committee member) / Ben Amor, Hani (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2018
133359-Thumbnail Image.png
Description
The current trend of interconnected devices, or the internet of things (IOT) has led to the popularization of single board computers (SBC). This is primarily due to their form-factor and low price. This has led to unique networks of devices that can have unstable network connections and minimal processing power.

The current trend of interconnected devices, or the internet of things (IOT) has led to the popularization of single board computers (SBC). This is primarily due to their form-factor and low price. This has led to unique networks of devices that can have unstable network connections and minimal processing power. Many parallel program- ming libraries are intended for use in high performance computing (HPC) clusters. Unlike the IOT environment described, HPC clusters will in general look to obtain very consistent network speeds and topologies. There are a significant number of software choices that make up what is referred to as the HPC stack or parallel processing stack. My thesis focused on building an HPC stack that would run on the SCB computer name the Raspberry Pi. The intention in making this Raspberry Pi cluster is to research performance of MPI implementations in an IOT environment, which had an impact on the design choices of the cluster. This thesis is a compilation of my research efforts in creating this cluster as well as an evaluation of the software that was chosen to create the parallel processing stack.
ContributorsO'Meara, Braedon Richard (Author) / Meuth, Ryan (Thesis director) / Dasgupta, Partha (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133381-Thumbnail Image.png
Description
This thesis discusses three recent optimization problems that seek to reduce disease spread on arbitrary graphs by deleting edges, and it discusses three approximation algorithms developed for these problems. Important definitions are presented including the Linear Threshold and Triggering Set models and the set function properties of submodularity and monotonicity.

This thesis discusses three recent optimization problems that seek to reduce disease spread on arbitrary graphs by deleting edges, and it discusses three approximation algorithms developed for these problems. Important definitions are presented including the Linear Threshold and Triggering Set models and the set function properties of submodularity and monotonicity. Also, important results regarding the Linear Threshold model and computation of the influence function are presented along with proof sketches. The three main problems are formally presented, and NP-hardness results along with proof sketches are presented where applicable. The first problem seeks to reduce spread of infection over the Linear Threshold process by making use of an efficient tree data structure. The second problem seeks to reduce the spread of infection over the Linear Threshold process while preserving the PageRank distribution of the input graph. The third problem seeks to minimize the spectral radius of the input graph. The algorithms designed for these problems are described in writing and with pseudocode, and their approximation bounds are stated along with time complexities. Discussion of these algorithms considers how these algorithms could see real-world use. Challenges and the ways in which these algorithms do or do not overcome them are noted. Two related works, one which presents an edge-deletion disease spread reduction problem over a deterministic threshold process and the other which considers a graph modification problem aimed at minimizing worst-case disease spread, are compared with the three main works to provide interesting perspectives. Furthermore, a new problem is proposed that could avoid some issues faced by the three main problems described, and directions for future work are suggested.
ContributorsStanton, Andrew Warren (Author) / Richa, Andrea (Thesis director) / Czygrinow, Andrzej (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131504-Thumbnail Image.png
Description
In the last few years, billion-dollar companies like Yahoo and Equifax have had data breaches causing millions of people’s personal information to be leaked online. Other billion-dollar companies like Google and Facebook have gotten in trouble for abusing people’s personal information for financial gain as well. In this new age

In the last few years, billion-dollar companies like Yahoo and Equifax have had data breaches causing millions of people’s personal information to be leaked online. Other billion-dollar companies like Google and Facebook have gotten in trouble for abusing people’s personal information for financial gain as well. In this new age of technology where everything is being digitalized and stored online, people all over the world are concerned about what is happening to their personal information and how they can trust it is being kept safe. This paper describes, first, the importance of protecting user data, second, one easy tool that companies and developers can use to help ensure that their user’s information (credit card information specifically) is kept safe, how to implement that tool, and finally, future work and research that needs to be done. The solution I propose is a software tool that will keep credit card data secured. It is only a small step towards achieving a completely secure data anonymized system, but when implemented correctly, it can reduce the risk of credit card data from being exposed to the public. The software tool is a script that can scan every viable file in any given system, server, or other file-structured Linux system and detect if there any visible credit card numbers that should be hidden.
ContributorsPappas, Alexander (Author) / Zhao, Ming (Thesis director) / Kuznetsov, Eugene (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131514-Thumbnail Image.png
Description
Political polarization is the coalescence of political parties -- and the individuals of which parties are composed -- around opposing ends of the ideological spectrum. Political parties in the United States have always been divided, however, in recent years this division has only intensified. Recently, polarization has also wound its

Political polarization is the coalescence of political parties -- and the individuals of which parties are composed -- around opposing ends of the ideological spectrum. Political parties in the United States have always been divided, however, in recent years this division has only intensified. Recently, polarization has also wound its way to the Supreme Court and the nomination processes of justices to the Court. This paper examines how prevalent polarization in the Supreme Court nomination process has become by looking specifically at the failed nomination of Judge Merrick Garland and the confirmations of now-Justices Neil Gorsuch and Brett Kavanaugh. This is accomplished by comparing the ideologies and qualifications of the three most recent nominees to those of previous nominees, as well as analysing the ideological composition of the Senate at the times of the individual nominations.
ContributorsJoss, Jacob (Author) / Hoekstra, Valerie (Thesis director) / Critchlow, Donald (Committee member) / Computer Science and Engineering Program (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05