Matching Items (962)
Filtering by

Clear all filters

135327-Thumbnail Image.png
Description
A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog scheme leads to computational modes in the solutions to highly nonlinear systems, and time-filters are often used to damp these modes. The proposed filter damps the computational modes without appreciably degrading the physical mode. Its performance in these metrics is superior to the second-order time-filtered leapfrog scheme developed by Robert and Asselin.
Created2016-05
135339-Thumbnail Image.png
Description
Observations of four times ionized iron and nickel (Fe V & Ni V) in the G191-B2B white dwarf spectrum have been used to test for variations in the fine structure constant, α, in the presence of strong gravitational fields. The laboratory wavelengths for these ions were thought to be the

Observations of four times ionized iron and nickel (Fe V & Ni V) in the G191-B2B white dwarf spectrum have been used to test for variations in the fine structure constant, α, in the presence of strong gravitational fields. The laboratory wavelengths for these ions were thought to be the cause of inconsistent conclusions regarding the
variation of α as observed through the white dwarf spectrum. This thesis presents 129 revised Fe V wavelengths (1200 Å to 1600 Å) and 161 revised Ni V wavelengths (1200 Å to 1400 Å) with uncertainties of approximately 3 mÅ. A systematic calibration error
is identified in the previous Ni V wavelengths and is corrected in this work. The evaluation of the fine structure variation is significantly improved with the results
found in this thesis.
ContributorsWard, Jacob Wolfgang (Author) / Treacy, Michael (Thesis director) / Alarcon, Ricardo (Committee member) / Nave, Gillian (Committee member) / Department of Physics (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135340-Thumbnail Image.png
Description
Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and

Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and daily operations. One of the most important parts is being able to predict and foreshadow failures in the system, in order to make sure that those are fixed before they turn into large issues. One specific area where preventive maintenance is a very big part of daily activity is the automotive industry. Automobile owners are encouraged to take their cars in for maintenance on a routine schedule (based on mileage or time), or when their car signals that there is an issue (low oil levels for example). Although this level of maintenance is enough when people are in charge of cars, the rise of autonomous vehicles, specifically self-driving cars, changes that. Now instead of a human being able to look at a car and diagnose any issues, the car needs to be able to do this itself. The objective of this project was to create such a system. The Electronics Preventive Maintenance System is an internal system that is designed to meet all these criteria and more. The EPMS system is comprised of a central computer which monitors all major electronic components in an autonomous vehicle through the use of standard off-the-shelf sensors. The central computer compiles the sensor data, and is able to sort and analyze the readings. The filtered data is run through several mathematical models, each of which diagnoses issues in different parts of the vehicle. The data for each component in the vehicle is compared to pre-set operating conditions. These operating conditions are set in order to encompass all normal ranges of output. If the sensor data is outside the margins, the warning and deviation are recorded and a severity level is calculated. In addition to the individual focus, there's also a vehicle-wide model, which predicts how necessary maintenance is for the vehicle. All of these results are analyzed by a simple heuristic algorithm and a decision is made for the vehicle's health status, which is sent out to the Fleet Management System. This system allows for accurate, effortless monitoring of all parts of an autonomous vehicle as well as predictive modeling that allows the system to determine maintenance needs. With this system, human inspectors are no longer necessary for a fleet of autonomous vehicles. Instead, the Fleet Management System is able to oversee inspections, and the system operator is able to set parameters to decide when to send cars for maintenance. All the models used for the sensor and component analysis are tailored specifically to the vehicle. The models and operating margins are created using empirical data collected during normal testing operations. The system is modular and can be used in a variety of different vehicle platforms, including underwater autonomous vehicles and aerial vehicles.
ContributorsMian, Sami T. (Author) / Collofello, James (Thesis director) / Chen, Yinong (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135660-Thumbnail Image.png
Description
This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can be used to understand the image better through recognizing different features present within the image. Deep CNNs, however, require training sets that can be larger than a million pictures in order to fine tune their feature detectors. For the case of facial expression datasets, none of these large datasets are available. Due to this limited availability of data required to train a new CNN, the idea of using naïve domain adaptation is explored. Instead of creating and using a new CNN trained specifically to extract features related to FER, a previously trained CNN originally trained for another computer vision task is used. Work for this research involved creating a system that can run a CNN, can extract feature vectors from the CNN, and can classify these extracted features. Once this system was built, different aspects of the system were tested and tuned. These aspects include the pre-trained CNN that was used, the layer from which features were extracted, normalization used on input images, and training data for the classifier. Once properly tuned, the created system returned results more accurate than previous attempts on facial expression recognition. Based on these positive results, naïve domain adaptation is shown to successfully leverage advantages of deep CNNs for facial expression recognition.
ContributorsEusebio, Jose Miguel Ang (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135678-Thumbnail Image.png
Description
The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With

The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With the advent of Google, modern day students are able to arrive at the same information within 15 seconds. This technology, the internet, is reshaping the way we learn. As a result, the academic integrity policies that are set forth at the college level seem to be outdated, often prohibiting the use of technology as a resource for learning. The purpose of this paper is to explore why exactly these resources are prohibited. By contrasting a subject such as Computer Science with the Humanities, the paper explores the need for the internet as a resource in some fields as opposed to others. Taking a look at the knowledge presented in Computer Science, the course structure, and the role that professors play in teaching this knowledge, this thesis evaluates the epistemology of Engineering subjects. By juxtaposing Computer Science with the less technology reliant humanities subjects, it is clear that one common policy outlining academic integrity does not suffice for an entire university. Instead, there should be amendments made to the policy specific to each subject, in order to best foster an environment of learning at the university level. In conclusion of this thesis, Arizona State University's Academic Integrity Policy is analyzed and suggestions are made to remove ambiguity in the language of the document, in order to promote learning at the university.
ContributorsMohan, Sishir Basavapatna (Author) / Brake, Elizabeth (Thesis director) / Martin, William (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136627-Thumbnail Image.png
Description
This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an

This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an ultimate goal, it was hoped that this research will contribute to optimizing human-swarm interaction for the design of human supervisory controllers for swarms. To achieve the stated goals, two investigations were conducted. First, subjects gaze was tracked while observing a simulated swarm as it moved across the screen. This swarm changed in size, disturbance level in the position of the agents, speed, and path curvature. Second, subjects were asked to play a supervisory role as they watched a swarm move across the screen toward targets. The subjects determined whether a collision would occur and with which target while their responses as well as their gaze was tracked. In the case of an observatory role, a model of human gaze was created. This was embodied in a second order model similar to that of a spring-mass-damper system. This model was similar across subjects and stable. In the case of a supervisory role, inherent weaknesses in human perception were found, such as the inability to predict future position of curved paths. These findings are discussed in depth within the thesis. Overall, the results presented suggest that understanding human perception of swarms offers a new approach to the problem of swarm control. The ability to adapt controls to the strengths and weaknesses could lead to great strides in the reduction of operators in the control of one UAV, resulting in a move towards one man operation of a swarm.
ContributorsWhitton, Elena Michelle (Author) / Artemiadis, Panagiotis (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136637-Thumbnail Image.png
Description
The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor

The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor control algorithms.
ContributorsDavis, Severin Jan (Author) / Burger, Kevin (Thesis director) / Vannoni, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136658-Thumbnail Image.png
Description
The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases

The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases of a double-bladed and single-bladed rotor have been run to investigate the causes and types of wake instabilities, as well as compare them to the short wave, long wave, and mutual inductance modes proposed by Widnall[2]. Evaluation of results revealed several perturbations appearing in both single and double-bladed wakes, the origin of which was unknown and difficult to trace. This made the computations not directly comparable to theoretical results, and drawing into question the physical flight conditions being modeled. Nonetheless, they displayed a wake structure highly sensitive to both computational and physical disturbances; thus extreme care must be taken in constructing grids and applying boundary conditions when doing wake computations to ensure results relevant to the complex and dynamic flight conditions of physical aircraft are generated.
ContributorsDrake, Nicholas Spencer (Author) / Wells, Valana (Thesis director) / Squires, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
136716-Thumbnail Image.png
Description
The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot's guidance with the assistance of inertial sensors for guidance. Autonomous systems depend

The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot's guidance with the assistance of inertial sensors for guidance. Autonomous systems depend heavily on the use of a global positioning satellite receiver which can be inhibited by satellite signal strength, low update rates and poor positioning accuracy. For precise navigation of a micro air vehicle in locations where GPS signals are unobtainable, such as indoors or throughout a dense urban environment, additional sensors must complement the inertial sensors to provide improved navigation state estimations without the use of a GPS. By creating a system that allows for the rapid development of experimental guidance, navigation and control algorithms on versatile, low-cost development platforms, improved navigation systems may be tested with relative ease and at reduced cost. Incorporating a downward-facing camera with this system may also be utilized to further improve vehicle autonomy in denied-GPS environments.
ContributorsPolak, Adam Michael (Author) / Rodriguez, Armando (Thesis director) / Saripalli, Srikanth (Committee member) / Hannan, Mike (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12