Matching Items (948)
Filtering by

Clear all filters

156977-Thumbnail Image.png
Description
Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or

Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or obese pregnant women using control engineering approaches. Motivated by the needs of the HMZ, this dissertation presents how to use system identification and state estimation techniques to assist in dynamical systems modeling and further enhance the performance of the closed-loop control system for interventions.

Underreporting of energy intake (EI) has been found to be an important consideration that interferes with accurate weight control assessment and the effective use of energy balance (EB) models in an intervention setting. To better understand underreporting, a variety of estimation approaches are developed; these include back-calculating energy intake from a closed-form of the EB model, a Kalman-filter based algorithm for recursive estimation from randomly intermittent measurements in real time, and two semi-physical identification approaches that can parameterize the extent of systematic underreporting with global/local modeling techniques. Each approach is analyzed with intervention participant data and demonstrates potential of promoting the success of weight control.

In addition, substantial efforts have been devoted to develop participant-validated models and incorporate into the Hybrid Model Predictive Control (HMPC) framework for closed-loop interventions. System identification analyses from Phase I led to modifications of the measurement protocols for Phase II, from which longer and more informative data sets were collected. Participant-validated models obtained from Phase II data significantly increase predictive ability for individual behaviors and provide reliable open-loop dynamic information for HMPC implementation. The HMPC algorithm that assigns optimized dosages in response to participant real time intervention outcomes relies on a Mixed Logical Dynamical framework which can address the categorical nature of dosage components, and translates sequential decision rules and other clinical considerations into mixed-integer linear constraints. The performance of the HMPC decision algorithm was tested with participant-validated models, with the results indicating that HMPC is superior to "IF-THEN" decision rules.
ContributorsGuo, Penghong (Author) / Rivera, Daniel E. (Thesis advisor) / Peet, Matthew M. (Committee member) / Forzani, Erica (Committee member) / Deng, Shuguang (Committee member) / Pavlic, Theodore P. (Committee member) / Arizona State University (Publisher)
Created2018
133345-Thumbnail Image.png
Description
The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase

The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase the dosage of currently prescribed antibiotics. This study attempted to combat two forms of antibiotic resistance. The first is the AcrAB efflux pump which is able to pump antibiotics out of the cell. The second is the biofilms that E. coli can form. By using an inhibitor, the pump should be unable to rid itself of an antibiotic. On the other hand, using Tween allows for biofilm formation to either be disrupted or for the biofilm to be dissolved. By combining these two chemicals with an antibiotic that the efflux pump is known to expel, low concentrations of each chemical should result in an equivalent or greater effect on bacteria compared to any one chemical in higher concentrations. To test this hypothesis a 96 well plate BEC screen test was performed. A range of antibiotics were used at various concentrations and with varying concentrations of both Tween and the inhibitor to find a starting point. Following this, Erythromycin and Ciprofloxacin were picked as the best candidates and the optimum range of the antibiotic, Tween, and inhibitor were established. Finally, all three chemicals were combined to observe the effects they had together as opposed to individually or paired together. From the results of this experiment several conclusions were made. First, the inhibitor did in fact increase the effectiveness of the antibiotic as less antibiotic was needed if the inhibitor was present. Second, Tween showed an ability to prevent recovery in the MBEC reading, showing that it has the ability to disrupt or dissolve biofilms. However, Tween also showed a noticeable decrease in effectiveness in the overall treatment. This negative interaction was unable to be compensated for when using the inhibitor and so the hypothesis was proven false as combining the three chemicals led to a less effective treatment method.
ContributorsPetrovich Flynn, Chandler James (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Perkins, Kim (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133359-Thumbnail Image.png
Description
The current trend of interconnected devices, or the internet of things (IOT) has led to the popularization of single board computers (SBC). This is primarily due to their form-factor and low price. This has led to unique networks of devices that can have unstable network connections and minimal processing power.

The current trend of interconnected devices, or the internet of things (IOT) has led to the popularization of single board computers (SBC). This is primarily due to their form-factor and low price. This has led to unique networks of devices that can have unstable network connections and minimal processing power. Many parallel program- ming libraries are intended for use in high performance computing (HPC) clusters. Unlike the IOT environment described, HPC clusters will in general look to obtain very consistent network speeds and topologies. There are a significant number of software choices that make up what is referred to as the HPC stack or parallel processing stack. My thesis focused on building an HPC stack that would run on the SCB computer name the Raspberry Pi. The intention in making this Raspberry Pi cluster is to research performance of MPI implementations in an IOT environment, which had an impact on the design choices of the cluster. This thesis is a compilation of my research efforts in creating this cluster as well as an evaluation of the software that was chosen to create the parallel processing stack.
ContributorsO'Meara, Braedon Richard (Author) / Meuth, Ryan (Thesis director) / Dasgupta, Partha (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133363-Thumbnail Image.png
Description
An in-depth analysis on the effects vortex generators cause to the boundary layer separation that occurs when an internal flow passes through a diffuser is presented. By understanding the effects vortex generators demonstrate on the boundary layer, they can be utilized to improve the performance and efficiencies of diffusers and

An in-depth analysis on the effects vortex generators cause to the boundary layer separation that occurs when an internal flow passes through a diffuser is presented. By understanding the effects vortex generators demonstrate on the boundary layer, they can be utilized to improve the performance and efficiencies of diffusers and other internal flow applications. An experiment was constructed to acquire physical data that could assess the change in performance of the diffusers once vortex generators were applied. The experiment consisted of pushing air through rectangular diffusers with half angles of 10, 20, and 30 degrees. A velocity distribution model was created for each diffuser without the application of vortex generators before modeling the velocity distribution with the application of vortex generators. This allowed the two results to be directly compared to one another and the improvements to be quantified. This was completed by using the velocity distribution model to find the partial mass flow rate through the outer portion of the diffuser's cross-sectional area. The analysis concluded that the vortex generators noticeably increased the performance of the diffusers. This was best seen in the performance of the 30-degree diffuser. Initially the diffuser experienced airflow velocities near zero towards the edges. This led to 0.18% of the mass flow rate occurring in the outer one-fourth portion of the cross-sectional area. With the application of vortex generators, this percentage increased to 5.7%. The 20-degree diffuser improved from 2.5% to 7.9% of the total mass flow rate in the outer portion and the 10-degree diffuser improved from 11.9% to 19.2%. These results demonstrate an increase in performance by the addition of vortex generators while allowing the possibility for further investigation on improvement through the design and configuration of these vortex generators.
ContributorsSanchez, Zachary Daniel (Author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133366-Thumbnail Image.png
Description
The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later.

The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later. The impeller, shroud, volute, shaft, motor, and ESC were the main focuses of the pump assembly, but the seals, bearings, lubrication methods, and flow path connections were considered as elements which would require future attention. The resulting pump design is intended to be used on the Daedalus Astronautics HRE test cart for design verification. In the future, trade studies and more detailed analyses should and will be performed before this pump is integrated into the Daedalus Astronautics flight-ready HRE.
ContributorsShillingburg, Ryan Carl (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133381-Thumbnail Image.png
Description
This thesis discusses three recent optimization problems that seek to reduce disease spread on arbitrary graphs by deleting edges, and it discusses three approximation algorithms developed for these problems. Important definitions are presented including the Linear Threshold and Triggering Set models and the set function properties of submodularity and monotonicity.

This thesis discusses three recent optimization problems that seek to reduce disease spread on arbitrary graphs by deleting edges, and it discusses three approximation algorithms developed for these problems. Important definitions are presented including the Linear Threshold and Triggering Set models and the set function properties of submodularity and monotonicity. Also, important results regarding the Linear Threshold model and computation of the influence function are presented along with proof sketches. The three main problems are formally presented, and NP-hardness results along with proof sketches are presented where applicable. The first problem seeks to reduce spread of infection over the Linear Threshold process by making use of an efficient tree data structure. The second problem seeks to reduce the spread of infection over the Linear Threshold process while preserving the PageRank distribution of the input graph. The third problem seeks to minimize the spectral radius of the input graph. The algorithms designed for these problems are described in writing and with pseudocode, and their approximation bounds are stated along with time complexities. Discussion of these algorithms considers how these algorithms could see real-world use. Challenges and the ways in which these algorithms do or do not overcome them are noted. Two related works, one which presents an edge-deletion disease spread reduction problem over a deterministic threshold process and the other which considers a graph modification problem aimed at minimizing worst-case disease spread, are compared with the three main works to provide interesting perspectives. Furthermore, a new problem is proposed that could avoid some issues faced by the three main problems described, and directions for future work are suggested.
ContributorsStanton, Andrew Warren (Author) / Richa, Andrea (Thesis director) / Czygrinow, Andrzej (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131504-Thumbnail Image.png
Description
In the last few years, billion-dollar companies like Yahoo and Equifax have had data breaches causing millions of people’s personal information to be leaked online. Other billion-dollar companies like Google and Facebook have gotten in trouble for abusing people’s personal information for financial gain as well. In this new age

In the last few years, billion-dollar companies like Yahoo and Equifax have had data breaches causing millions of people’s personal information to be leaked online. Other billion-dollar companies like Google and Facebook have gotten in trouble for abusing people’s personal information for financial gain as well. In this new age of technology where everything is being digitalized and stored online, people all over the world are concerned about what is happening to their personal information and how they can trust it is being kept safe. This paper describes, first, the importance of protecting user data, second, one easy tool that companies and developers can use to help ensure that their user’s information (credit card information specifically) is kept safe, how to implement that tool, and finally, future work and research that needs to be done. The solution I propose is a software tool that will keep credit card data secured. It is only a small step towards achieving a completely secure data anonymized system, but when implemented correctly, it can reduce the risk of credit card data from being exposed to the public. The software tool is a script that can scan every viable file in any given system, server, or other file-structured Linux system and detect if there any visible credit card numbers that should be hidden.
ContributorsPappas, Alexander (Author) / Zhao, Ming (Thesis director) / Kuznetsov, Eugene (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131514-Thumbnail Image.png
Description
Political polarization is the coalescence of political parties -- and the individuals of which parties are composed -- around opposing ends of the ideological spectrum. Political parties in the United States have always been divided, however, in recent years this division has only intensified. Recently, polarization has also wound its

Political polarization is the coalescence of political parties -- and the individuals of which parties are composed -- around opposing ends of the ideological spectrum. Political parties in the United States have always been divided, however, in recent years this division has only intensified. Recently, polarization has also wound its way to the Supreme Court and the nomination processes of justices to the Court. This paper examines how prevalent polarization in the Supreme Court nomination process has become by looking specifically at the failed nomination of Judge Merrick Garland and the confirmations of now-Justices Neil Gorsuch and Brett Kavanaugh. This is accomplished by comparing the ideologies and qualifications of the three most recent nominees to those of previous nominees, as well as analysing the ideological composition of the Senate at the times of the individual nominations.
ContributorsJoss, Jacob (Author) / Hoekstra, Valerie (Thesis director) / Critchlow, Donald (Committee member) / Computer Science and Engineering Program (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131515-Thumbnail Image.png
Description
Human habitation of other planets requires both cost-effective transportation and low time-of-flight for human passengers and critical supplies. The current methods for interplanetary orbital transfers, such as the Hohmann transfer, require either expensive, high fuel maneuvers or extended space travel. However, by utilizing the high velocities of a super-geosynchronous space

Human habitation of other planets requires both cost-effective transportation and low time-of-flight for human passengers and critical supplies. The current methods for interplanetary orbital transfers, such as the Hohmann transfer, require either expensive, high fuel maneuvers or extended space travel. However, by utilizing the high velocities of a super-geosynchronous space elevator, spacecraft released from an apex anchor could achieve interplanetary transfers with minimal Delta V fuel and time of flight requirements. By using Lambert’s Problem and Free Release propagation to determine the minimal fuel transfer from a terrestrial space elevator to Mars under a variety of initial conditions and time-of-flight constraints, this paper demonstrates that the use of a space elevator release can address both needs by dramatically reducing the time-of-flight and the fuel budget.
ContributorsTorla, James (Author) / Peet, Matthew (Thesis director) / Swan, Peter (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05