Matching Items (6)

136488-Thumbnail Image.png

Comparison of the Mesonic and Diquark Effects on Tetraquark States via Resonance Synchronization with Thresholds

Description

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.

Contributors

Agent

Created

Date Created
  • 2015-05

135853-Thumbnail Image.png

Tunneling Time in Quantum Mechanics

Description

The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A

The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A calculation of the dwell time for two successive rectangular barriers in the opaque limit is given and the result depends on the barrier widths and hence does not lead to superluminal tunneling or the Hartman effect.

Contributors

Agent

Created

Date Created
  • 2009-05

154965-Thumbnail Image.png

Faint relics of violent high energy physics in the early universe

Description

The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe

The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple to Standard Model fields through Higgs Portal or Kinetic Mixing operators and radiate particles that contribute to the diffuse gamma ray background. In this work we calculate the properties of these strings, including finding effective couplings between the strings and Standard Model fields. Explosive particle production after inflation, known as preheating, would have produced a stochastic background of gravitational waves (GW). This work shows how the presence of realistic additional fields and interactions can affect this prediction dramatically. Specifically, it considers the inflaton to be coupled to a light scalar field, and shows that even a very small quartic self-interaction term will reduce the amplitude of the gravitational wave spectrum. For self-coupling $\lambda_{\chi} \gtrsim g^2$, where $g^2$ is the inflaton-scalar coupling, the peak energy density goes as $\Omega_{\rm GW}^{(\lambda_{\chi})} / \Omega_{\rm GW}^{(\lambda_{\chi}=0)} \sim (g^2/\lambda_{\chi})^{2}$. Finally, leptonic charge-parity (CP) violation could be an important clue to understanding the origin of our universe's matter-antimatter asymmetry, and long-baseline neutrino oscillation experiments in the coming decade may uncover this. The CP violating effects of a possible fourth ``sterile" neutrino can interfere with the usual three neutrinos; this work shows how combinations of various measurements can help break those degeneracies.

Contributors

Agent

Created

Date Created
  • 2016

151412-Thumbnail Image.png

Precision measurement of the radiative decay mode of the free neutron

Description

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment,

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09 ± 0.32) × 10-3 in the energy range of 15 keV to 340 keV. This was achieved by prompt coincident detection of an electron and photon, in delayed coincidence with a proton. The photons were detected by using a single bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode. This thesis deals with the follow-up experiment, RDK II, to measure the branching ratio at the level of approximately 1% and the energy spectrum at the level of a few percent. The most significant improvement of RDK II is the use of a photon detector with about an order of magnitude greater solid angle coverage than RDK I. In addition, the detectable energy range has been extended down to approximately 250 eV and up to the endpoint energy of 782 keV. This dissertation presents an overview of the apparatus, development of a new data analysis technique for radiative decay, and results for the ratio of electron-proton-photon coincident Repg to electron-proton coincident Rep events.

Contributors

Agent

Created

Date Created
  • 2012

150778-Thumbnail Image.png

Parity violation in the hadronic weak interaction

Description

This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized

This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements presented here for the nuclei Chlorine ( 35Cl) and Aluminum ( 27Al ) are part of a program with the ultimate goal of measuring the asymmetry in the angular distribution of gamma rays emitted in the capture of neutrons on protons, with a precision better than 10-8, in order to extract the weak hadronic coupling constant due to pion exchange interaction with isospin change equal with one ( hπ 1). Based on theoretical calculations asymmetry in the angular distribution of the gamma rays from neutron capture on protons has an estimated size of 5·10-8. This implies that the Al parity violation asymmetry and its uncertainty have to be known with a precision smaller than 4·10-8. The proton target is liquid Hydrogen (H2) contained in an Aluminum vessel. Results are presented for parity violation and parity-conserving asymmetries in Chlorine and Aluminum. The systematic and statistical uncertainties in the calculation of the parity-violating and parity-conserving asymmetries are discussed.

Contributors

Agent

Created

Date Created
  • 2012

149608-Thumbnail Image.png

The effect of material properties on energy resolution in gamma-ray detectors

Description

Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in

Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such as the bandgap and plasmon resonance energy are studied using a model for inelastic electron scattering based on electron energy-loss spectra. From a simplified "toy model" for a generic material, energy resolution is found to oscillate as the plasmon resonance energy is increased, and energy resolution can also depend on the valence band width. By incorporating the model developed here as an extension of the radiation transport code Penelope, photon processes are also included. The enhanced version of Penelope is used to calculate the Fano factor and average electron-hole pair energy in semiconductors silicon, gallium arsenide, zinc telluride, and scintillators cerium fluoride and lutetium oxyorthosilicate (LSO). If the effects of the valence band density-of-states and phonon scattering are removed, the calculated energy-resolution for these materials is fairly close to that for a toy model with a uniform electron energy-loss probability density function. This implies that the details of the electron cascade may in some cases have only a marginal effect on energy resolution.

Contributors

Agent

Created

Date Created
  • 2011