Matching Items (16)
Filtering by

Clear all filters

153136-Thumbnail Image.png
Description
Over the past two decades there has been much discussion surrounding the potential of zoos as conservation institutions. Although zoos have clearly intensified their rhetorical and programmatic commitment to conservation (both ex situ and in situ), many critics remain skeptical of these efforts. This study was comprised of two parts:

Over the past two decades there has been much discussion surrounding the potential of zoos as conservation institutions. Although zoos have clearly intensified their rhetorical and programmatic commitment to conservation (both ex situ and in situ), many critics remain skeptical of these efforts. This study was comprised of two parts: 1) an investigation of the general relationship between U.S. zoological institutions and the conservation agenda, and 2) a more specific single case study of conservation engagement and institutional identity at the Phoenix Zoo. Methods included extensive literature review, expert interviews with scholars and zoo professionals, site visits to the Phoenix Zoo and archival research. I found that the Phoenix Zoo is in the process of consciously creating a conservation-centered institutional identity by implementing and publicizing various conservation initiatives. Despite criticism of the embrace of conservation by zoos today, these institutions will be increasingly important agents of biodiversity protection and conservation education in this century.
ContributorsLove, Karen (Author) / Minteer, Ben (Thesis advisor) / Kinzig, Ann (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2014
150973-Thumbnail Image.png
Description
In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling to explore different variations on the consumer-resource type systems, identifying some possible transitional regimes that can precede the tragedy of the commons. I then reformulate it as a game of a multi-player prisoner's dilemma and study two possible approaches for preventing it, namely direct modification of players' payoffs through punishment/reward and modification of the environment in which the interactions occur. I also investigate the questions of whether the strategy of resource allocation for reproduction or competition would yield higher fitness in an evolving consumer-resource type system and demonstrate that the direction in which the system will evolve will depend not only on the state of the environment but largely on the initial composition of the population. I then apply the developed framework to modeling cancer as an evolving ecological system and draw conclusions about some alternative approaches to cancer treatment.
ContributorsKareva, Irina (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Collins, James (Committee member) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2012
151061-Thumbnail Image.png
Description
Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a

Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a framework that uses three strategies for incorporating behavior into demographic models, outline the costs of each strategy through decision analysis, and build on previous work in behavioral ecology and demography. First, relevant behavioral mechanisms should be included in demographic models used for conservation decision-making. Second, I propose rapid behavioral assessment as a useful tool to approximate demographic rates through regression of demographic phenomena on observations of related behaviors. This technique provides behaviorally estimated parameters that may be applied to population viability analysis for use in management. Finally, behavioral indices can be used as warning signs of population decline. The proposed framework combines each strategy through decision analysis to provide quantitative rules that determine when incorporating aspects of conservation behavior may be beneficial to management. Chapter III applies this technique to estimate birthrate in a colony of California sea lions in the Gulf of California, Mexico. This study includes a cost analysis of the behavioral and traditional parameter estimation techniques. I then provide in Chapter IV practical recommendations for applying this framework to management programs along with general guidelines for the development of rapid behavioral assessment.
ContributorsWildermuth, Robert (Author) / Gerber, Leah R. (Thesis advisor) / Collins, James (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
156224-Thumbnail Image.png
Description
Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived

Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived conflict between religion and evolution. Using pre-post instructional surveys of students in introductory college biology, Study 1 establishes instructional strategies that can be effective for reducing students' perceived conflict between religion and evolution. Through interviews and qualitative analyses, Study 2 documents how instructors teaching evolution at public universities may be resistant towards implementing strategies that can reduce students' perceived conflict, perhaps because of their own lack of religious beliefs and lack of training and awareness about students' conflict with evolution. Interviews with religious students in Study 3 reveals that religious college biology students can perceive their instructors as unfriendly towards religion which can negatively impact these students' perceived conflict between religion and evolution. Study 4 explores how instructors at Christian universities, who share the same Christian backgrounds as their students, do not struggle with implementing strategies that reduce students' perceived conflict between religion and evolution. Cumulatively, these studies reveal a need for a new instructional framework for evolution education that takes into account the religious cultural difference between instructors who are teaching evolution and students who are learning evolution. As such, a new instructional framework is then described, Religious Cultural Competence in Evolution Education (ReCCEE), that can help instructors teach evolution in a way that can reduce students' perceived conflict between religion and evolution, increase student acceptance of evolution, and create more inclusive college biology classrooms for religious students.
ContributorsBarnes, Maryann Elizabeth (Author) / Brownell, Sara (Thesis advisor) / Nesse, Randolph (Committee member) / Collins, James (Committee member) / Husman, Jenefer (Committee member) / Maienschein, Jane (Committee member) / Arizona State University (Publisher)
Created2018
156452-Thumbnail Image.png
Description
Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses.

Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses. Using qualitative and quantitative methodologies, I identified how students’ identities, such as their gender and LGBTQIA identity, and students’ perceptions of their own intelligence influence their experience in active learning science classes and consequently their social integration in college. I also determined factors of active learning classrooms and instructor behaviors that can affect whether students experience positive or negative social integration in the context of active learning. I found that students’ hidden identities, such as the LGBTQIA identity, are more relevant in active learning classes where students work together and that the increased relevance of one’s identity can have a positive and negative impact on their social integration. I also found that students’ identities can predict their academic self-concept, or their perception of their intelligence as it compares to others’ intelligence in biology, which in turn predicts their participation in small group-discussion. While many students express a fear of negative evaluation, or dread being evaluated negatively by others when speaking out in active learning classes, I identified that how instructors structure group work can cause students to feel more or less integrated into the college science classroom. Lastly, I identified tools that instructors can use, such as name tents and humor, which can positive affect students’ social integration into the college science classroom. In sum, I highlight inequities in students’ experiences in active learning science classrooms and the mechanisms that underlie some of these inequities. I hope this work can be used to create more inclusive undergraduate active learning science courses.
ContributorsCooper, Katelyn M (Author) / Brownell, Sara E (Thesis advisor) / Stout, Valerie (Committee member) / Collins, James (Committee member) / Orchinik, Miles (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
153750-Thumbnail Image.png
Description
How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s,

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s, one prominent ecologist distinguished what he called “ecological time”—around ten generations—from “evolutionary time”— around half of a million years. For most ecologists working in the first half of the 20th century, evolution by natural selection was indeed a slow and plodding process, tangible in its products but not in its processes, and inconsequential for explaining most ecological phenomena. During the 1960s, however, many ecologists began to see evolution as potentially rapid and observable. Natural selection moved from the distant past—a remote explanans for both extant biological diversity and paleontological phenomena—to a measurable, quantifiable mechanism molding populations in real time.

The idea that adaptive evolution could be rapid and highly localized was a significant enabling condition for the emergence of ecological genetics in the second half of the 20th century. Most of what historians know about that conceptual shift and the rise of ecological genetics centers on the work of Oxford zoologist E. B. Ford and his students on polymorphism in Lepidotera, especially industrial melanism in Biston betularia. I argue that ecological genetics in Britain was not the brainchild of an infamous patriarch (Ford), but rather the outgrowth of a long tradition of pastureland research at plant breeding stations in Scotland and Wales, part of a discipline known as “genecology” or “experimental taxonomy.” Bradshaw’s investigative activities between 1948 and 1968 were an outgrowth of the specific brand of plant genecology practiced at the Welsh and Scottish Plant Breeding stations. Bradshaw generated evidence that plant populations with negligible reproductive isolation—separated by just a few meters—could diverge and adapt to contrasting environmental conditions in just a few generations. In Bradshaw’s research one can observe the crystallization of a new concept of rapid adaptive evolution, and the methodological and conceptual transformation of genecology into ecological genetics.
ContributorsPeirson, Bruce Richard Erick (Author) / Laubichler, Manfred D (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2015
154808-Thumbnail Image.png
Description
The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous

The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous species- and clade-specific multigene families have major functions in the development and maintenance of infection. Nonetheless, while the evolutionary mechanisms predominant on many species- and clade-specific multigene families have been previously studied, there are far less studies dedicated to analyzing genus common multigene families (GCMFs). I studied the patterns of natural selection and recombination in 90 GCMFs with diverse numbers of gene gain/loss events. I found that the majority of GCMFs are formed by duplications events that predate speciation of mammal Plasmodium species, with many paralogs being neutrally maintained thereafter. In general, multigene families involved in immune evasion and host cell invasion commonly showed signs of positive selection and species-specific gain/loss events; particularly, on Plasmodium species is the simian and rodent clades. A particular multigene family: the merozoite surface protein-7 (msp7) family, is found in all Plasmodium species and has functions related to the erythrocyte invasion. Within Plasmodium vivax, differences in the number of paralogs in this multigene family has been previously explained, at least in part, as potential adaptations to the human host. To investigate this I studied msp7 orthologs in closely related non-human primate parasites where homology was evident. I also estimated paralogs’ evolutionary history and genetic polymorphism. The emerging patterns where compared with those of Plasmodium falciparum. I found that the evolution of the msp7 multigene family is consistent with a Birth-and-Death model where duplications, pseudogenization and gene lost events are common. In order to study additional aspects in the evolution of Plasmodium, I evaluated the trends of long term and short term evolution and the putative effects of vertebrate- host’s immune pressure of gametocytes across various Plasmodium species. Gametocytes, represent the only sexual stage within the Plasmodium life cycle, and are also the transition stages from the vertebrate to the mosquito vector. I found that, while male and female gametocytes showed different levels of immunogenicity, signs of positive selection were not entirely related to the location and presence of immune epitope regions. Overall, these studies further highlight the complex evolutionary patterns observed in Plasmodium.
ContributorsCastillo Siri, Andreina I (Author) / Rosenberg, Michael (Thesis advisor) / Escalante, Ananias (Committee member) / Taylor, Jesse (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
155408-Thumbnail Image.png
Description
Using a simple $SI$ infection model, I uncover the

overall dynamics of the system and how they depend on the incidence

function. I consider both an epidemic and endemic perspective of the

model, but in both cases, three classes of incidence

functions are identified.

In the epidemic form,

power incidences, where the infective portion $I^p$

Using a simple $SI$ infection model, I uncover the

overall dynamics of the system and how they depend on the incidence

function. I consider both an epidemic and endemic perspective of the

model, but in both cases, three classes of incidence

functions are identified.

In the epidemic form,

power incidences, where the infective portion $I^p$ has $p\in(0,1)$,

cause unconditional host extinction,

homogeneous incidences have host extinction for certain parameter constellations and

host survival for others, and upper density-dependent incidences

never cause host extinction. The case of non-extinction in upper

density-dependent

incidences extends to the case where a latent period is included.

Using data from experiments with rhanavirus and salamanders,

maximum likelihood estimates are applied to the data.

With these estimates,

I generate the corrected Akaike information criteria, which

reward a low likelihood and punish the use of more parameters.

This generates the Akaike weight, which is used to fit

parameters to the data, and determine which incidence functions

fit the data the best.

From an endemic perspective, I observe

that power incidences cause initial condition dependent host extinction for

some parameter constellations and global stability for others,

homogeneous incidences have host extinction for certain parameter constellations and

host survival for others, and upper density-dependent incidences

never cause host extinction.

The dynamics when the incidence function is homogeneous are deeply explored.

I expand the endemic considerations in the homogeneous case

by adding a predator into the model.

Using persistence theory, I show the conditions for the persistence of each of the

predator, prey, and parasite species. Potential dynamics of the system include parasite mediated

persistence of the predator, survival of the ecosystem at high initial predator levels and

ecosystem collapse at low initial predator levels, persistence of all three species, and much more.
ContributorsFarrell, Alexander E. (Author) / Thieme, Horst R (Thesis advisor) / Smith, Hal (Committee member) / Kuang, Yang (Committee member) / Tang, Wenbo (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2017
154874-Thumbnail Image.png
Description
The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species

The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species and pathogens. I approach the problem using theoretical and applied models in ecology and economics. First, I use a multi-species theoretical network model to evaluate the ability of dispersal to maintain system-level biodiversity and productivity. I then extend this analysis to consider the effects of dispersal in a coupled social-ecological system where people derive benefits from species. Finally, I estimate an empirical model of the foot and mouth disease risks of trade. By combining outbreak and trade data I estimate the disease risks associated with the international trade in live animals while controlling for the biosecurity measures in place in importing countries and the presence of wild reservoirs. I find that the risks associated with the spread and dispersal of species may be positive or negative, but that this relationship depends on the ecological and economic components of the system and the interactions between them.
ContributorsShanafelt, David William (Author) / Perrings, Charles (Thesis advisor) / Fenichel, Eli (Committee member) / Richards, Timorthy (Committee member) / Janssen, Marco (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
149606-Thumbnail Image.png
Description
The Committee on Rare and Endangered Wildlife Species (CREWS) of the U.S. Fish and Wildlife Service (FWS) made important and lasting contributions to one of the most significant pieces of environmental legislation in U.S. history: the Endangered Species Act of 1973 (ESA). CREWS was a prominent science-advisory body within the

The Committee on Rare and Endangered Wildlife Species (CREWS) of the U.S. Fish and Wildlife Service (FWS) made important and lasting contributions to one of the most significant pieces of environmental legislation in U.S. history: the Endangered Species Act of 1973 (ESA). CREWS was a prominent science-advisory body within the U.S. Department of the Interior (DOI) in the 1960s and 1970s, responsible for advising on the development of federal endangered-wildlife policy. The Committee took full advantage of its scientific and political authority by identifying a particular object of conservation--used in the development of the first U.S. list of endangered species--and establishing captive breeding as a primary conservation practice, both of which were written into the ESA and are employed in endangered-species listing and recovery to this day. Despite these important contributions to federal endangered-species practice and policy, CREWS has received little attention from historians of science or policy scholars. This dissertation is an empirical history of CREWS that draws on primary sources from the Smithsonian Institution (SI) Archives and a detailed analysis of the U.S. congressional record. The SI sources (including the records of the Bird and Mammal Laboratory, an FWS staffed research group stationed at the Smithsonian Institution) reveal the technical and political details of CREWS's advisory work. The congressional record provides evidence showing significant contributions of CREWS and its advisors and supervisors to the legislative process that resulted in the inclusion of key CREWS-inspired concepts and practices in the ESA. The foundational concepts and practices of the CREWS's research program drew from a number of areas currently of interest to several sub-disciplines that investigate the complex relationship between science and society. Among them are migratory bird conservation, systematics inspired by the Evolutionary Synthesis, species-focused ecology, captive breeding, reintroduction, and species transplantation. The following pages describe the role played by CREWS in drawing these various threads together and codifying them as endangered-species policy in the ESA.
ContributorsWinston, Johnny (Author) / Hamilton, Andrew (Thesis advisor) / Maienschein, Jane (Committee member) / Henson, Pamela (Committee member) / Collins, James (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2011