Matching Items (22)
152191-Thumbnail Image.png
Description
Epidemiological theory normally does not predict host extinction from infectious disease because of a host density threshold below which pathogens cannot persist. However, host extinction can occur when a biotic or abiotic pathogen reservoir allows for density-independent transmission. Amphibians are facing global population decline and extinction from the emerging infectious

Epidemiological theory normally does not predict host extinction from infectious disease because of a host density threshold below which pathogens cannot persist. However, host extinction can occur when a biotic or abiotic pathogen reservoir allows for density-independent transmission. Amphibians are facing global population decline and extinction from the emerging infectious disease chytridiomycosis, caused by the fungus Batrachochytrium dentrobatidis (Bd). I use the model species Eleutherodactylus coqui to assess the impact of Bd on terrestrial direct-developing frog species, a common life history in the tropics. I tested the importance of two key factors that might influence this impact and then used laboratory experiments and published field data to model population-level impacts of Bd on E. coqui. First, I assessed the ontogenetic susceptibility of E. coqui by exposing juvenile and adult frogs to the same pathogen strain and dose. Juveniles exposed to Bd had significantly lower survival rates compared with control juveniles, while adult frogs often cleared infection. Second, I conducted experiments to determine whether E. coqui can become infected with Bd indirectly from contact with zoospores shed onto vegetation by an infected frog and from direct exposure to an infected frog. Both types of transmission were observed, making this the first demonstration that amphibians can become infected indirectly in non-aquatic habitats. Third, I tested the hypothesis that artificially-maintained cultures of Bd attenuate in pathogenicity, an effect known for other fungal pathogens. Comparing two cultures of the same Bd strain with different passage histories revealed reduced zoospore production and disease-induced mortality rates for a susceptible frog species (Atelopus zeteki) but not for the less-susceptible E. coqui. Finally, I used a mathematical model to project the population-level impacts of chytridiomycosis on E. coqui. Model analysis showed that indirect transmission, combined with either a high rate of zoospore production or low rate of zoospore mortality, is required for Bd to drive E. coqui populations below an extinction threshold. High rates of transmission plus frequent re-infection could lead to poor recruitment of infected juveniles and population decline. My research adds further insight into how emerging infectious disease is contributing to the loss of amphibian biodiversity.
ContributorsLanghammer, Penny F. (Author) / Collins, James P. (Thesis advisor) / Brooks, Thomas M (Committee member) / Burrowes, Patricia A. (Committee member) / Anderies, John M (Committee member) / Escalante, Ananias A (Committee member) / Smith, Andrew T. (Committee member) / Arizona State University (Publisher)
Created2013
151929-Thumbnail Image.png
Description
The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns

The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns of neutralizing antibody and drug resistance. Extracting maximum understanding from such diverse data can only be accomplished by analyzing the viral population from many angles. This body of work explores two primary aspects of HIV sequence evolution, point mutation and recombination, through cross-sectional (inter-individual) and longitudinal (intra-individual) investigations, respectively. Cross-sectional Analysis: The role of Haiti in the subtype B pandemic has been hotly debated for years; while there have been many studies, up to this point, no one has incorporated the well-known mechanism of retroviral recombination into their biological model. Prior to the use of recombination detection, multiple analyses produced trees where subtype B appears to have first entered Haiti, followed by a jump into the rest of the world. The results presented here contest the Haiti-first theory of the pandemic and instead suggest simultaneous entries of subtype B into Haiti and the rest of the world. Longitudinal Analysis: Potential N-linked glycosylation sites (PNGS) are the most evolutionarily dynamic component of one of the most evolutionarily dynamic proteins known to date. While the number of mutations associated with the increase or decrease of PNGS frequency over time is high, there are a set of relatively stable sites that persist within and between longitudinally sampled individuals. Here, I identify the most conserved stable PNGSs and suggest their potential roles in host-virus interplay. In addition, I have identified, for the first time, what may be a gp-120-based environmental preference for N-linked glycosylation sites.
ContributorsHepp, Crystal Marie, 1981- (Author) / Rosenberg, Michael S. (Thesis advisor) / Hedrick, Philip (Committee member) / Escalante, Ananias (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013
153154-Thumbnail Image.png
Description
During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological

During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological organization. For some this topic remains contentious, while others consider the debate settled, even while disagreeing about when and how resolution occurred, raising the question: "Why have these debates continued?"

Here I explore the biology, history, and philosophy of the possibility of natural selection operating at levels of biological organization other than the organism by focusing on debates about group-level selection that have occurred since the 1960s. In particular, I use experimental, historical, and synthetic methods to review how the debates have changed, and whether different uses of the same words and concepts can lead to different interpretations of the same experimental data.

I begin with the results of a group-selection experiment I conducted using the parasitoid wasp Nasonia, and discuss how the interpretation depends on how one conceives of and defines a "group." Then I review the history of the group selection controversy and argue that this history is best interpreted as multiple, interrelated debates rather than a single continuous debate. Furthermore, I show how the aspects of these debates that have changed the most are related to theoretical content and empirical data, while disputes related to methods remain largely unchanged. Synthesizing this material, I distinguish four different "approaches" to the study of multilevel selection based on the questions and methods used by researchers, and I use the results of the Nasonia experiment to discuss how each approach can lead to different interpretations of the same experimental data. I argue that this realization can help to explain why debates about group and multilevel selection have persisted for nearly sixty years. Finally, the conclusions of this dissertation apply beyond evolutionary biology by providing an illustration of how key concepts can change over time, and how failing to appreciate this fact can lead to ongoing controversy within a scientific field.
ContributorsDimond, Christopher C (Author) / Collins, James P. (Thesis advisor) / Gadau, Juergen (Committee member) / Laubichler, Manfred (Committee member) / Armendt, Brad (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2014
150616-Thumbnail Image.png
Description
Infectious diseases have emerged as a significant threat to wildlife. Environmental change is often implicated as an underlying factor driving this emergence. With this recent rise in disease emergence and the acceleration of environmental change, it is important to identify the environmental factors that alter host-pathogen dynamics and their underlying

Infectious diseases have emerged as a significant threat to wildlife. Environmental change is often implicated as an underlying factor driving this emergence. With this recent rise in disease emergence and the acceleration of environmental change, it is important to identify the environmental factors that alter host-pathogen dynamics and their underlying mechanisms. The emerging pathogen Batrachochytrium dendrobatidis (Bd) is a clear example of the negative effects infectious diseases can have on wildlife. Bd is linked to global declines in amphibian diversity and abundance. However, there is considerable variation in population-level responses to Bd, with some hosts experiencing marked declines while others persist. Environmental factors may play a role in this variation. This research used populations of pond-breeding chorus frogs (Pseudacris maculata) in Arizona to test if three rapidly changing environmental factors nitrogen (N), phosphorus (P), and temperature influence the presence, prevalence, and severity of Bd infections. I evaluated the reliability of a new technique for detecting Bd in water samples and combined this technique with animal sampling to monitor Bd in wild chorus frogs. Monitoring from 20 frog populations found high Bd presence and prevalence during breeding. A laboratory experiment found 85% adult mortality as a result of Bd infection; however, estimated chorus frog densities in wild populations increased significantly over two years of sampling despite high Bd prevalence. Presence, prevalence, and severity of Bd infections were not correlated with aqueous concentrations of N or P. There was, however, support for an annual temperature-induced reduction in Bd prevalence in newly metamorphosed larvae. A simple mathematical model suggests that this annual temperature-induced reduction of Bd infections in larvae in combination with rapid host maturation may help chorus frog populations persist despite high adult mortality. These results demonstrate that Bd can persist across a wide range of environmental conditions, providing little support for the influence of N and P on Bd dynamics, and show that water temperature may play an important role in altering Bd dynamics, enabling chorus frogs to persist with this pathogen. These findings demonstrate the importance of environmental context and host life history for the outcome of host-pathogen interactions.
ContributorsHyman, Oliver J. (Author) / Collins, James P. (Thesis advisor) / Davidson, Elizabeth W. (Committee member) / Anderies, John M. (Committee member) / Elser, James J. (Committee member) / Escalante, Ananias (Committee member) / Arizona State University (Publisher)
Created2012
151042-Thumbnail Image.png
Description
Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate

Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate change and urban development on vegetation distribution in a Mediterranean-type ecosystem; to identify the primary source of uncertainty in suitable habitat predictions; and to evaluate how well conservation areas protect future habitat in the Southwest ecoregion of the California Floristic Province. I used a consensus-based modeling approach combining three different species distribution models to predict current and future suitable habitat for 19 plant species representing different plant functional types (PFT) defined by fire-response (obligate seeders, resprouting shrubs), and life forms (herbs, subshurbs). I also examined the response of species grouped by range sizes (large, small). I used two climate models, two emission scenarios, two thresholds, and high-resolution (90m resolution) environmental data to create a range of potential scenarios. I evaluated the effectiveness of an existing conservation network to protect suitable habitat for rare species in light of climate and land use change. The results indicate that the area of suitable habitat for each species varied depending on the climate model, emission scenario, and threshold combination. The suitable habitat for up to four species could disappear from the ecoregion, while suitable habitat for up to 15 other species could decrease under climate change conditions. The centroid of the species' suitable environmental conditions could shift up to 440 km. Large net gains in suitable habitat were predicted for a few species. The suitable habitat area for herbs has a small response to climate change, while obligate seeders could be the most affected PFT. The results indicate that the other two PFTs gain a considerable amount of suitable habitat area. Several rare species could lose suitable habitat area inside designated conservation areas while gaining suitable habitat area outside. Climate change is predicted to be more important than urban development as a driver of habitat loss for vegetation in this region in the coming century. These results indicate that regional analyses of this type are useful and necessary to understand the dynamics of drivers of change at the regional scale and to inform decision making at this scale.
ContributorsBeltrán Villarreal, Bray de Jesús (Author) / Franklin, Janet (Thesis advisor) / Fenichel, Eli P (Committee member) / Kinzig, Ann P (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2012
150849-Thumbnail Image.png
Description
Novel resource inputs represent an increasingly common phenomenon in ecological systems as global change alters environmental factors and species distributions. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and

Novel resource inputs represent an increasingly common phenomenon in ecological systems as global change alters environmental factors and species distributions. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects. In arid and semiarid systems of the American Southwest, crayfish may be especially important as detrital processors due to the lack of specialized detritivores. I tested the impact of virile crayfish (Orconectes virilis) on benthic invertebrates and detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of drought-tolerant saltcedar (Tamarix ramosissima), but did not impact breakdown of Fremont cottonwood (Populus fremontii), Gooding's willow (Salix goodingii), or seepwillow (Baccharis salicifolia). The density and composition of the invertebrate community colonizing leaf litter bags were both heavily influenced by litter species but not directly by crayfish presence. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams. By increasing breakdown rates of saltcedar, crayfish shift the composition of leaf litter in streams, which in turn may affect the composition and biomass of colonizing invertebrate communities. More research is needed to determine the full extent to which these alterations change community composition over time.
ContributorsMoody, Eric Kellan (Author) / Sabo, John L (Thesis advisor) / Collins, James P. (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2012
Description
Plasmodium falciparum and Plasmodium vivax are two of the main propagators of human malaria. Both species contain the protein, Apical Membrane Antigen 1 (AMA-1), which is involved in the process of host cell invasion. However, the high degree of polymorphisms and antigenic diversity in this protein has prevented consistent single-vaccine

Plasmodium falciparum and Plasmodium vivax are two of the main propagators of human malaria. Both species contain the protein, Apical Membrane Antigen 1 (AMA-1), which is involved in the process of host cell invasion. However, the high degree of polymorphisms and antigenic diversity in this protein has prevented consistent single-vaccine success. Furthermore, the three main domains within AMA-1 (Domains I, II, and III), possess variable polymorphic features and levels of diversity. Overcoming this issue may require an understanding of the type of selection acting on AMA-1 in P. falciparum and P. vivax. Therefore, this investigation aimed to determine the type of selection acting on the whole AMA-1 coding sequence and in each domain for P. falciparum and P. vivax. Population structure was investigated on a global scale and among individual countries. AMA-1 sequences were obtained from the National Center for Biotechnology. For P. falciparum, 649 complete and 382 partial sequences were obtained. For P. vivax, 395 sequences were obtained (370 partial). The AMA-1 gene in P. falciparum was found to possess high nonsynonymous polymorphisms and disproportionately low synonymous polymorphisms. Domain I was found to have the most diverse region with consistently high nonsynonymous substitutions across all countries. Large, positive, and significant Z-test scores indicated the presence of positive selection while FST and NST values showed low genetic differentiation across populations. Data trends for all analyses were relatively consistent for the global and country-based analyses. The only country to deviate was Venezuela, which was the only South American country analyzed. Network analyses did not show distinguishable groupings. For P. falciparum, it was concluded that positive diversifying selection was acting on the AMA-1 gene, particularly in Domain I. In AMA-1 of P. vivax, nonsynonymous and synonymous polymorphisms were relatively equal across all analyses. FST and NST values were high, indicating that countries were genetically distinct populations. Network analyses did not show distinguishable grouping; however, the data was limited to small sample sizes. From the data, it was concluded that AMA-1 in P. vivax was evolving neutrally, where selective pressures did not strongly encourage positive or purifying selection specifically. In addition, different AMA-1 P. vivax strains were genetically distinct and this genetic identity correlated with geographic region. Therefore, AMA-1 strains in P. falciparum and P. vivax not only evolve differently and undergo different form of selection, but they also require different vaccine development strategies. A combination of strain-specific vaccines along with preventative measures on an environmental level will likely be more effective than trying to achieve a single, comprehensive vaccine.
ContributorsEspinas, Jaye Frances Palma (Author) / Escalante, Ananias (Thesis director) / Taylor, Jay (Committee member) / Rosenberg, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136033-Thumbnail Image.png
Description
The development of plant-derived antigens is very promising in vaccine research and the ability to synthesize vaccines cheaply and safely in plant, which can then be ingested, has enormous potential benefits. The goal of this project is to summarize and synthesize the work of current scientists on this issue into

The development of plant-derived antigens is very promising in vaccine research and the ability to synthesize vaccines cheaply and safely in plant, which can then be ingested, has enormous potential benefits. The goal of this project is to summarize and synthesize the work of current scientists on this issue into a cohesive argument in favor of plant-derived vaccinations, while acknowledging any possible drawbacks to their development and the actions that are being taken to overcome them. Hepatitis B, a virus for which orally administered, plant-based vaccines are currently being developed, serves as the case study in which these issues are analyzed. It was found that the synthesized protein is effective immunogenic in humans, but there is still the remaining challenge of making it generate a strong enough immune response through simple ingestion. For this reason, it is clear that plant-derived, oral vaccinations merit further research and hold real prospects of success.
ContributorsCurry, Shannon (Author) / Mason, Hugh (Thesis director) / Escalante, Ananias (Committee member) / LePore, Kate (Committee member) / Barrett, The Honors College (Contributor)
Created2008-05
136036-Thumbnail Image.png
Description
Biogeography is the study of the spatial distribution of the earth's biota, both in the present and the past. Traditionally, biogeographical studies have relied on a combination of surveys of existing populations, fossil evidence, and the geological record of the earth. However, with the advent of relatively inexpensive methods of

Biogeography is the study of the spatial distribution of the earth's biota, both in the present and the past. Traditionally, biogeographical studies have relied on a combination of surveys of existing populations, fossil evidence, and the geological record of the earth. However, with the advent of relatively inexpensive methods of DNA sequencing, it is now possible to use information concerning the genetic relatedness of individuals in populations to address questions about how those populations came to be where they are today. For example, biogeographical studies of HIV-I provide strong support for the hypothesis that this virus arose in Africa through a host switch from chimpanzees to humans and only began to spread to human populations located on other continents some 60 to 70 years ago (Sharp & Hahn, 2010).
ContributorsZheng, Wenyu (Author) / Taylor, Jesse (Thesis director) / Escalante, Ananias (Committee member) / Thieme, Horst (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
134587-Thumbnail Image.png
Description
Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona

Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona Game and Fish Department has worked for the last 12 years to recover populations of Chiricahua Leopard Frogs to ensure the species survives in the Huachuca Mountains in southeastern Arizona. During this time, the department tested for Bd throughout their release sites. As a result of large differences in prevalence noted in prior sampling for Bd in Miller and Ramsey canyons, I investigated abiotic factors that could explain these differences. I analyzed water samples from two canyons in the Huachuca Mountains and used nutrient analysis and filter extraction to test for differences in abiotic factors between these two sites that could affect Bd transmission. Results show that Ramsey Canyon was a positive site for Bd, while Miller Canyon remained negative. Results from water temperature estimates as well as a test for 30 elements revealed possible reasons for differences in Bd transmission between the two canyons.
ContributorsSmith, Paige Gabrielle (Author) / Collins, James P. (Thesis director) / Franklin, Janet (Committee member) / Sredl, Michael J. (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05