Matching Items (2)
Filtering by

Clear all filters

128908-Thumbnail Image.png
Description

N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC

N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.

ContributorsZhou, Xiaobing (Author) / Smith, Hilda (Author) / Girardo Silva, Ana Maria (Author) / Belnap, Jayne (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-24
128271-Thumbnail Image.png
Description

The aim of this study was to evaluate the effects of moderate aerobic exercise training on sleep, depression, cortisol, and markers of immune function in patients with chronic primary insomnia. Twenty-one sedentary participants (16 women aged 44.7 ± 9 years) with chronic primary insomnia completed a 4-month intervention of moderate

The aim of this study was to evaluate the effects of moderate aerobic exercise training on sleep, depression, cortisol, and markers of immune function in patients with chronic primary insomnia. Twenty-one sedentary participants (16 women aged 44.7 ± 9 years) with chronic primary insomnia completed a 4-month intervention of moderate aerobic exercise. Compared with baseline, polysomnographic data showed improvements following exercise training. Also observed were reductions in depression symptoms and plasma cortisol. Immunologic assays revealed a significant increase in plasma apolipoprotein A (140.9 ± 22 to 151.2 ± 22 mg/dL) and decreases in CD4 (915.6 ± 361 to 789.6 ± 310 mm[superscript 3]) and CD8 (532.4 ± 259 to 435.7 ± 204 mm[superscript 3]). Decreases in cortisol were significantly correlated with increases in total sleep time (r = -0.51) and REM sleep (r = -0.52). In summary, long-term moderate aerobic exercise training improved sleep, reduced depression and cortisol, and promoted significant changes in immunologic variables.

Created2014-09-21