Matching Items (1,005)
155915-Thumbnail Image.png
Description
Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in

Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in nanowires. The focus of this thesis is on developing a low field mobility model for a GaN nanowire using Ensemble Monte Carlo (EMC) techniques. A 2D Schrödinger-Poisson solver and a one-dimensional Monte Carlo solver is developed for an Aluminum Gallium Nitride/Gallium Nitride Heterostructure nanowire. A GaN/AlN/AlGaN heterostructure device is designed which creates 2-dimensional potential well for electrons. The nanowire is treated as a quasi-1D system in this work. A self-consistent 2D Schrödinger-Poisson solver is designed which determines the subband energies and the corresponding wavefunctions of the confined system. Three scattering mechanisms: acoustic phonon scattering, polar optical phonon scattering and piezoelectric scattering are considered to account for the electron phonon interactions in the system. Overlap integrals and 1D scattering rate expressions are derived for all the mechanisms listed. A generic one-dimensional Monte Carlo solver is also developed. Steady state results from the 1D Monte Carlo solver are extracted to determine the low field mobility of the GaN nanowires.
ContributorsKumar, Viswanathan Naveen (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
157176-Thumbnail Image.png
Description
Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for

Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for more efficient die area utilization, breakdown scaling with the height of the device, and burying high electric fields in the bulk where they will not charge interface states that can lead to current collapse at higher frequency.

Though GaN CAVETs are promising new devices, they are expensive to develop due to new or exotic materials and processing steps. As a result, the accurate simulation of GaN CAVETs has become critical to the development of new devices. Using Silvaco Atlas 5.24.1.R, best practices were developed for GaN CAVET simulation by recreating the structure and results of the pGaN insulated gate CAVET presented in chapter 3 of [8].

From the results it was concluded that the best simulation setup for transfer characteristics, output characteristics, and breakdown included the following. For methods, the use of Gummel, Block, Newton, and Trap. For models, SRH, Fermi, Auger, and impact selb. For mobility, the use of GANSAT and manually specified saturation velocity and mobility (based on doping concentration). Additionally, parametric sweeps showed that, of those tested, critical CAVET parameters included channel mobility (and thus doping), channel thickness, Current Blocking Layer (CBL) doping, gate overlap, and aperture width in rectangular devices or diameter in cylindrical devices.
ContributorsWarren, Andrew (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2019
157046-Thumbnail Image.png
Description
Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion.

In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters.

In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices.
ContributorsFu, Houqiang (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
133588-Thumbnail Image.png
Description
With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements,

With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements, college students most frequently received information from friends and family. STEM majors in fields unrelated to health who were taking a supplement were found to be less likely to receive information about the supplement from a medical practitioner than those in health fields or those in non-STEM majors (-26.9%, p=0.018). STEM majors in health-related fields were 15.0% more likely to treat colds and/or cold symptoms with research-supported methods identified from reliable sources, while non-health STEM and non-STEM majors were more likely to take unsupported cold treatments (p=0.010). Surveyed students, regardless of major, also stated they would trust a medical practitioner for supplement advice above other sources (88.0%), and the majority expressed a belief that dietary supplements are approved/regulated by the government (59.8%).
ContributorsPerez, Jacob Tanner (Author) / Hendrickson, Kirstin (Thesis director) / Lefler, Scott (Committee member) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137433-Thumbnail Image.png
ContributorsChandler, N. Kayla (Author) / Neisewander, Janet (Thesis director) / Sanabria, Federico (Committee member) / Olive, M. Foster (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
137434-Thumbnail Image.png
Description
I propose that norms regulate behaviors that negatively impact an individual's survival and reproduction. But because monitoring and enforcing of norms can be costly, individuals should be selective about which norms they police and under what circumstances they should do so. Two studies tested this idea by experimentally activating fitness-relevant

I propose that norms regulate behaviors that negatively impact an individual's survival and reproduction. But because monitoring and enforcing of norms can be costly, individuals should be selective about which norms they police and under what circumstances they should do so. Two studies tested this idea by experimentally activating fitness-relevant motives and having participants answer questions about the policing of norms. The first study examined a norm prescribing respect for status and another proscribing sexual coercion. Results from Study 1 failed to support the hypotheses; activating a status-seeking motive did not have the predicted effects on policing of the respect-status norm nor did activating a mating motive have the predicted effects on policing of the respect-status norm or anti-coercion norm. Study 2 examined two new norms, one prescribing that people stay home when sick and the other proscribing people from having sex with another person's partners. Study 2 also manipulated whether self or others were the target of the policing. Study 2 failed to provide support; a disease avoidance motive failed to have effects on policing of the stay home when sick norm. Individuals in a relationship under a mating motive wanted less policing of others for violation of the mate poaching norm than those in a baseline condition, opposite of the predicted effects.
ContributorsSmith, M. Kristopher (Author) / Neuberg, L. Steven (Thesis director) / Presson, Clark (Committee member) / Hruschka, J. Daniel (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
137565-Thumbnail Image.png
Description
Literature in public administration emphasizes a growing dissatisfaction with government on the part of residents. Where there tends to be a lack in the literature is in terms of solutions to this problem. We would like to argue that the engagement process itself has the power to foster a profound

Literature in public administration emphasizes a growing dissatisfaction with government on the part of residents. Where there tends to be a lack in the literature is in terms of solutions to this problem. We would like to argue that the engagement process itself has the power to foster a profound attitudinal shift on the part of both residents and government. This paper explores the structural and cultural barriers to satisfactory public engagement both from literature and a combination of policy analysis, semi-structured interviews and participatory observation within the City of Tempe. We then provide recommendations to the City of Tempe on how to overcome these barriers and effect authentic public engagement practices. With these new suggested practices and mindsets, we provide a way that people can have the power to create their own community.
ContributorsRiffle, Morgan (Co-author) / Tchida, Celina (Co-author) / Ingram-Waters, Mary (Thesis director) / Grzanka, Patrick (Committee member) / King, Cheryl (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
137451-Thumbnail Image.png
Description
This thesis examines the relationship between unofficial, official, and parallel Islam in Uzbekistan following the end of the Soviet Union. Key touchstone moments in Uzbekistan during the twentieth-century show the history between unofficial and official Islam and the resulting precedents set for Muslims gathering against the government. This historical analysis

This thesis examines the relationship between unofficial, official, and parallel Islam in Uzbekistan following the end of the Soviet Union. Key touchstone moments in Uzbekistan during the twentieth-century show the history between unofficial and official Islam and the resulting precedents set for Muslims gathering against the government. This historical analysis shows how President Karimov and the Uzbek government view and approach Islam in the country following independence.
ContributorsTieslink, Evan (Author) / Batalden, Stephen (Thesis director) / Kefeli, Agnes (Committee member) / Saikia, Yasmin (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Politics and Global Studies (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
137145-Thumbnail Image.png
Description
Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom.

Through this creative project, I executed a Distracted Driving Awareness Campaign at Arizona State University to raise awareness about the dangers of distracted driving, specifically texting while driving. As an Undergraduate Student Government Senator, my priority is the safety and success of students, both in and out of the classroom. By partnering with State Farm and AT&T, we were able to raise awareness about the dangers of distracted driving and collected over 200 pledges from students to never text and drive.
ContributorsHibbs, Jordan Ashley (Author) / Miller, Clark (Thesis director) / Parmentier, Mary Jane (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Department of Psychology (Contributor) / Graduate College (Contributor)
Created2014-05
134611-Thumbnail Image.png
Description
This paper reviews several current designs of Cube Satellite (CubeSat) Electrical Power Systems (EPS) based on Silicon FET technologies and their current deficiencies, such as radiation-incurred defects and switching power losses. A strategy to fix these is proposed by the way of using Gallium Nitride (GaN) High Electron-Mobility Transistors (HEMTs)

This paper reviews several current designs of Cube Satellite (CubeSat) Electrical Power Systems (EPS) based on Silicon FET technologies and their current deficiencies, such as radiation-incurred defects and switching power losses. A strategy to fix these is proposed by the way of using Gallium Nitride (GaN) High Electron-Mobility Transistors (HEMTs) as switching devices within Buck/Boost Converters and other regulators. This work summarizes the EPS designs of several CubeSat missions, classifies them, and outlines their efficiency. An in-depth example of an EPS is also given, explaining the process in which these systems are designed. Areas of deficiency are explained along with reasoning as to why GaN can mitigate these losses, including its wide bandgap properties such as high RDS(on) and High Breakdown Voltage. Special design considerations must be kept in mind when using GaN HEMTs in this application and an example of a CubeSat using GaN HEMTs is mentioned. Finally, challenges ahead for GaN are explored including manufacturing considerations and long-term reliability.
ContributorsWilloughby, Alexander George (Author) / Kitchen, Jennifer (Thesis director) / Zhao, Yuji (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05