Matching Items (3,624)
Filtering by

Clear all filters

128341-Thumbnail Image.png
Description

Rubisco enzymes play central roles in carbon fixation, with potential importance in biotechnology, but have eluded a full description of their multistep assembly and function. A new article describes the fascinating discovery that some archaeal Rubiscos contain a built-in assembly domain inserted into an otherwise canonical Rubisco fold, providing a

Rubisco enzymes play central roles in carbon fixation, with potential importance in biotechnology, but have eluded a full description of their multistep assembly and function. A new article describes the fascinating discovery that some archaeal Rubiscos contain a built-in assembly domain inserted into an otherwise canonical Rubisco fold, providing a tremendous expansion of our understanding of the diversity of naturally occurring Rubiscos.

ContributorsWachter, Rebekka (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-04-21
128337-Thumbnail Image.png
Description

The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2·nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate

The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2·nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.

ContributorsRuff, Steven (Author) / Farmer, Jack (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-11-17
128332-Thumbnail Image.png
Description

Absent minded people are not under the control of task-relevant stimuli. According to the Neuroenergetics Theory of attention (NeT), this lack of control is often due to fatigue of the relevant processing units in the brain caused by insufficient resupply of the neuron's preferred fuel, lactate, from nearby astrocytes. A

Absent minded people are not under the control of task-relevant stimuli. According to the Neuroenergetics Theory of attention (NeT), this lack of control is often due to fatigue of the relevant processing units in the brain caused by insufficient resupply of the neuron's preferred fuel, lactate, from nearby astrocytes. A simple drift model of information processing accounts for response-time statistics in a paradigm often used to study inattention, the Sustained Attention to Response Task (SART). It is suggested that errors and slowing in this fast-paced, response-engaging task may have little to due with inattention. Slower-paced and less response-demanding tasks give greater license for inattention—aka absent-mindedness, mind-wandering. The basic NeT is therefore extended with an ancillary model of attentional drift and recapture. This Markov model, called NEMA, assumes probability λ of lapses of attention from 1 s to the next, and probability α of drifting back to the attentional state. These parameters measure the strength of attraction back to the task (α), or away to competing mental states or action patterns (λ); their proportion determines the probability of the individual being inattentive at any point in time over the long run. Their values are affected by the fatigue of the brain units they traffic between. The deployment of the model is demonstrated with a data set involving paced responding.

ContributorsKilleen, Peter (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-07-01
128326-Thumbnail Image.png
Description

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and multi-level processes become more important. Here, we argue that addressing these multi-scale and multi-level challenges requires a collection of theories and models. We suggest that the conceptual domains of sustainability, resilience, and robustness provide a sufficiently rich collection of theories and models, but overlapping definitions and confusion about how these conceptual domains articulate with one another reduces their utility. We attempt to eliminate this confusion and illustrate how sustainability, resilience, and robustness can be used in tandem to address the multi-scale and multi-level challenges associated with global change.

ContributorsAnderies, John (Author) / Folke, Carl (Author) / Walker, Brian (Author) / Ostrom, Elinor (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013
128321-Thumbnail Image.png
Description

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.

Created2013-10-25
128319-Thumbnail Image.png
Description

A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP)

A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data.

The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m-2 yr-2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength.

The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.

ContributorsRawlins, M. A. (Author) / McGuire, A. D. (Author) / Kimball, J. S. (Author) / Dass, P. (Author) / Lawrence, D. (Author) / Burke, E. (Author) / Chen, X. (Author) / Delire, C. (Author) / Koven, C. (Author) / MacDougall, A. (Author) / Peng, S. (Author) / Rinke, A. (Author) / Saito, K. (Author) / Zhang, W. (Author) / Alkama, R. (Author) / Bohn, Theodore (Author) / Ciais, P. (Author) / Decharme, B. (Author) / Gouttevin, I. (Author) / Hajima, T. (Author) / Ji, D. (Author) / Krinner, G. (Author) / Lettenmaier, D. P. (Author) / Miller, P. (Author) / Moore, J. C. (Author) / Smith, B. (Author) / Sueyoshi, T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-28
128318-Thumbnail Image.png
Description

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study the uncertainties in an aircraft-based mass balance approach for quantifying carbon dioxide and methane emissions from an urban environment, focusing on Indianapolis, IN, USA, are described. The relatively level terrain of Indianapolis facilitated the application of mean wind fields in the mass balance approach. We investigate the uncertainties in our aircraft-based mass balance approach by (1) assessing the sensitivity of the measured flux to important measurement and analysis parameters including wind speed, background CO2 and CH4, boundary layer depth, and interpolation technique, and (2) determining the flux at two or more downwind distances from a point or area source (with relatively large source strengths such as solid waste facilities and a power generating station) in rapid succession, assuming that the emission flux is constant. When we quantify the precision in the approach by comparing the estimated emissions derived from measurements at two or more downwind distances from an area or point source, we find that the minimum and maximum repeatability were 12 and 52%, with an average of 31%. We suggest that improvements in the experimental design can be achieved by careful determination of the background concentration, monitoring the evolution of the boundary layer through the measurement period, and increasing the number of downwind horizontal transect measurements at multiple altitudes within the boundary layer.

ContributorsCambaliza, M. O. L. (Author) / Shepson, P. B. (Author) / Caulton, D. R. (Author) / Stirm, B. (Author) / Samarov, D. (Author) / Gurney, Kevin (Author) / Turnbull, J. (Author) / Davis, K. J. (Author) / Possolo, A. (Author) / Karion, A. (Author) / Sweeney, C. (Author) / Moser, B. (Author) / Hendricks, A. (Author) / Lauvaux, T. (Author) / Mays, K. (Author) / Whetstone, J. (Author) / Huang, J. (Author) / Razlivanov, Igor (Author) / Niles, N. L. (Author) / Richardson, S. J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-02
128317-Thumbnail Image.png
Description

Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical

Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN.

Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty.

Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of behavior. These distinct associations imply that cognition, anxiety-like, and depressive-like behaviors are modulated by unique serotonergic neurocircuitry, opening the possibility of novel avenues of targeted treatment for different types of cognitive and affective disorders.

ContributorsHiroi, Ryoko (Author) / Weyrich, Giulia (Author) / Koebele, Stephanie (Author) / Mennenga, Sarah (Author) / Talboom, Joshua (Author) / Hewitt, Lauren (Author) / Lavery, Courtney (Author) / Mendoza, Perla (Author) / Jordan, Ambra (Author) / Bimonte-Nelson, Heather (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12-08
128161-Thumbnail Image.png
Description

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into the USGS 24-category Land Use Categories using object-based image analysis with an overall accuracy of 80% to 95.5%. We estimated the land surface temperature (LST) of all available Landsat data from June to August for years 1990, 2000, and 2010 and computed the urban-rural difference in the average LST and Normalized Difference Vegetation Index (NDVI) for each city. Leveraging non-parametric statistical analysis, we also investigated the impacts of city size and population on the urban-rural difference in the summer daytime LST and NDVI. Urban expansion is observed for all five cities, but the urbanization pattern varies widely from city to city. A negative SUHI effect or an oasis effect exists for all the cities across all three years, and the amplitude of the oasis effect tends to increase as the urban-rural NDVI difference increases. A strong oasis effect is observed for Hotan and Kharga with evidently larger NDVI difference than the other cities. Larger cities tend to have a weaker cooling effect while a negative association is identified between NDVI difference and population. Understanding the daytime oasis effect of desert cities is vital for sustainable urban planning and the design of adaptive management, providing valuable guidelines to foster smart desert cities in an era of climate variability, uncertainty, and change.

ContributorsFan, Chao (Author) / Myint, Soe (Author) / Kaplan, Shai (Author) / Middel, Ariane (Author) / Zheng, Baojuan (Author) / Rahman, Atiqur (Author) / Huang, Huei-Ping (Author) / Brazel, Anthony J. (Author) / Blumberg, Dan G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-30
128159-Thumbnail Image.png
Description

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the environmental and/or physiological sources of such OB are unknown. Urban development is among the most recent, pervasive, and persistent human

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the environmental and/or physiological sources of such OB are unknown. Urban development is among the most recent, pervasive, and persistent human stressors on the planet and impacts many environmental and physiological parameters of animals. Here we review the mechanistic underpinnings and functional consequences of how human urbanization drives antioxidant/oxidative status in animals and how this affects signal expression and use. Although we find that urbanization has strong negative effects on signal quality (e.g., visual, auditory, chemical) and OB across a range of taxa, few urban ecophysiological studies address signals and oxidative stress in unison, and even fewer in a fitness context. We also highlight particular signal types, taxa, life-histories, and anthropogenic environmental modifications on which future work integrating OB, signals, and urbanization could be centered. Last, we examine the conceptual and empirical framework behind the idea that urban conditions may disentangle signal expression from honesty and affect plasticity and adaptedness of sexually selected traits and preferences in the city.

ContributorsHutton, Pierce (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-19