Matching Items (976)
130411-Thumbnail Image.png
Description
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated

The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated children's prosocial behavior; sympathy (concern and hypothesis testing) and prosocial behavior (indirect and direct, as well as verbal at older ages) were assessed with a task in which the experimenter feigned injury. In a panel path analysis, 30-month dispositional sadness predicted marginally higher 42-month sympathy; in addition, 30-month sympathy predicted 42-month sadness. Moreover, when controlling for prior levels of prosocial behavior, 30-month sympathy significantly predicted reported and observed prosocial behavior at 42 months. Sympathy did not mediate the relation between sadness and prosocial behavior (either reported or observed).
Created2015-01-01
130410-Thumbnail Image.png
Description
Dysregulated cortisol is a risk factor for poor health outcomes. Children of distressed mothers exhibit dysregulated cortisol, yet it is unclear whether maternal distress predicts cortisol activity in later developmental stages. This longitudinal study examined the prospective relation between maternal distress during late childhood (9–12 years) and adolescence (15–19 years)

Dysregulated cortisol is a risk factor for poor health outcomes. Children of distressed mothers exhibit dysregulated cortisol, yet it is unclear whether maternal distress predicts cortisol activity in later developmental stages. This longitudinal study examined the prospective relation between maternal distress during late childhood (9–12 years) and adolescence (15–19 years) and cortisol response in offspring in young adulthood (24–28 years). Data were collected from 51 recently divorced mothers and their children across 15 years. Higher maternal distress during late childhood was associated with lower total cortisol independent of levels of maternal distress in adolescence or young adulthood. Maternal distress during adolescence marginally predicted blunted cortisol when distress in childhood was low. Findings suggest that blunted cortisol activity in young adulthood may be a long-term consequence of exposure to maternal distress earlier in development.
ContributorsMahrer, Nicole (Author) / Luecken, Linda (Author) / Wolchik, Sharlene (Author) / Tein, Jenn-Yun (Author) / Sandler, Irwin (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor)
Created2014-11-01
130408-Thumbnail Image.png
Description
GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent

GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent polarization, these materials are also subject to a bound polarization charge, which influences the electronic state configuration. In this study, the surface band bending of N-face GaN, Ga-face GaN, and Ga-face AlGaN was measured with x-ray photoemission spectroscopy after various cleaning steps to investigate the effects of the polarization. Despite the different surface bound charge on these materials, similar band bending was observed regardless of the magnitude or direction of the charge. Specifically, the band bending varied from −0.1 eV to 0.9 eV on these samples, which supported the models of a Fermi level pinning state at ∼0.4 eV to 0.8 eV below the conduction band. Based on available literature, we suggest this pinning state is indirectly evident of a nitrogen vacancy or gallium-dangling bond.
ContributorsEller, Brianna S. (Author) / Yang, Jialing (Author) / Nemanich, Robert (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-12-01
130407-Thumbnail Image.png
Description
Lonsdaleite, also called hexagonal diamond, has been widely used as a marker of asteroidal impacts. It is thought to play a central role during the graphite-to-diamond transformation, and calculations suggest that it possesses mechanical properties superior to diamond. However, despite extensive efforts, lonsdaleite has never been produced or described as

Lonsdaleite, also called hexagonal diamond, has been widely used as a marker of asteroidal impacts. It is thought to play a central role during the graphite-to-diamond transformation, and calculations suggest that it possesses mechanical properties superior to diamond. However, despite extensive efforts, lonsdaleite has never been produced or described as a separate, pure material. Here we show that defects in cubic diamond provide an explanation for the characteristic d-spacings and reflections reported for lonsdaleite. Ultrahigh-resolution electron microscope images demonstrate that samples displaying features attributed to lonsdaleite consist of cubic diamond dominated by extensive {113} twins and {111} stacking faults. These defects give rise to nanometre-scale structural complexity. Our findings question the existence of lonsdaleite and point to the need for re-evaluating the interpretations of many lonsdaleite-related fundamental and applied studies.
Created2014-11-01
130406-Thumbnail Image.png
Description
Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect

Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect structures may help explain reactivity and overall materials performance in a wide range of applications. In this work we address the solubility problem and surface defects control on TiO2 nanoparticles. We report the synthesis and characterization of ∼4 nm TiO2 anatase spherical nanoparticles that are soluble and stable in a wide range of organic solvents and water. By controlling the temperature during the synthesis, we are able to tailor the density of defect states on the surface of the TiO2 nanoparticles without affecting parameters such as size, shape, core crystallinity, and solubility. The morphology of both kinds of nanoparticles was determined by TEM. EPR experiments were used to characterize the surface defects, and transient absorption measurements demonstrate the influence of the TiO2 defect states on photoinduced electron transfer dynamics.
Created2014-11-13
130405-Thumbnail Image.png
Description

We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We fit one- and two-component synthetic

We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We fit one- and two-component synthetic stellar models to the ETGs UV-optical-near-IR spectral energy distributions and find that a large fraction (∼40%) are likely to have experienced a minor (fYC ≲ 10% of stellar mass) burst of recent (tYC ≲ 1 Gyr) star formation. The measured age and mass fraction of the young stellar populations do not strongly trend with measurements of galaxy morphology. We note that massive (M > 1010.5M☼) recent star-forming ETGs appear to have larger sizes. Furthermore, high-mass, quiescent ETGs identified with likely companions populate a distinct region in the size-mass parameter space, in comparison with the distribution of massive ETGs with evidence of recent star formation (RSF). We conclude that both mechanisms of quenching star formation in disk-like ETGs and (gas-rich, minor) merger activity contribute to the formation of young stars and the size-mass evolution of intermediate redshift ETGs. The number of ETGs for which we have both HST WFC3 panchromatic (especially UV) imaging and spectroscopically confirmed redshifts is relatively small, therefore, a conclusion about the relative roles of both of these mechanisms remains an open question.

ContributorsRutkowski, Michael J. (Author) / Jeong, Hyunjin (Author) / Cohen, Seth (Author) / Kaviraj, Sugata (Author) / Windhorst, Rogier (Author) / Ryan, Russell E. (Author) / Koekemoer, Anton (Author) / Yi, Sukyoung K. (Author) / Hathi, Nimish P. (Author) / Dopita, Michael A. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-12-01