Matching Items (16)

135132-Thumbnail Image.png

VLIW Remotely Reconfigurable DSP Element

Description

The purpose of the Very Long Instruction Word (VLIW) Remotely Reconfigurable DSP Element is to use VLIW as a design process and to design hardware components of a reconfigurable DSP

The purpose of the Very Long Instruction Word (VLIW) Remotely Reconfigurable DSP Element is to use VLIW as a design process and to design hardware components of a reconfigurable DSP Element and ascertaining the overall length of the Very Long Instruction Word. This project is focused solely on hardware components being designed by hand with regards to certain specifications deemed by General Dynamics Mission Systems, and using the designs, finding the overall length of the VLIW for use in future work. To design each of the elements, General Dynamics had specified several requirements. Each element was then designed individually according to the requirements. After the initial design, each was sent back for a design review from General Dynamics, and after revision, all parts were linked together for an overall calculation on the length of the VLIW. VLIW Reconfigurable DSP Elements is not a new concept, but has yet to have a proof of concept published. Future work includes a proof of concept with software (done by the ASU Capstone team), then future development by General Dynamics. Should they choose to continue with this project, they will continue testing on FPGA boards, and perhaps future development into an ASIC. Overall the purpose of General Dynamics for proposing this project is for deep space payloads, for which this project has the most applications.

Contributors

Agent

Created

Date Created
  • 2016-12

155708-Thumbnail Image.png

6T-SRAM 1Mb design with test structures and post silicon validation

Description

Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM

Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM on a triple well process that allows body-biasing control. In addition to the normal mode operation, the design is embedded with Physical Unclonable Function (PUF) [Suh07] and Sense Amplifier Test (SA Test) mode. With PUF mode structures, the fabrication and environmental mismatches in bit cells are used to generate unique identification bits. These bits are fixed and known as preferred state of an SRAM bit cell. The direct access test structure is a measurement unit for offset voltage analysis of sense amplifiers. These designs are manufactured using a foundry bulk CMOS 55 nm low-power (LP) process. The details about SRAM bit-cell and peripheral circuit design is discussed in detail, for certain cases the circuit simulation analysis is performed with random variations embedded in SPICE models. Further, post-silicon testing results are discussed for normal operation of SRAMs and the special test modes. The silicon and circuit simulation results for various tests are presented.

Contributors

Agent

Created

Date Created
  • 2017

155707-Thumbnail Image.png

Radiation effects measurement test structure using GF 32-nm SOI process

Description

This thesis describes the design of a Single Event Transient (SET) duration measurement test-structure on the Global Foundries (previously IBM) 32-nm silicon-on insulator (SOI) process. The test structure is designed

This thesis describes the design of a Single Event Transient (SET) duration measurement test-structure on the Global Foundries (previously IBM) 32-nm silicon-on insulator (SOI) process. The test structure is designed for portability and allows quick design and implementation on a new process node. Such a test structure is critical in analyzing the effects of radiation on complementary metal oxide semi-conductor (CMOS) circuits. The focus of this thesis is the change in pulse width during propagation of SET pulse and build a test structure to measure the duration of a SET pulse generated in real time. This test structure can estimate the SET pulse duration with 10ps resolution. It receives the input SET propagated through a SET capture structure made using a chain of combinational gates. The impact of propagation of the SET in a >200 deep collection structure is studied. A novel methodology of deploying Thick Gate TID structure is proposed and analyzed to build multi-stage chain of combinational gates. Upon using long chain of combinational gates, the most critical issue of pulse width broadening and shortening is analyzed across critical process corners. The impact of using regular standard cells on pulse width modification is compared with NMOS and/or PMOS skewed gates for the chain of combinational gates. A possible resolution to pulse width change is demonstrated using circuit and layout design of chain of inverters, two and three inputs NOR gates. The SET capture circuit is also tested in simulation by introducing a glitch signal that mimics an individual ion strike that could lead to perturbation in SET propagation. Design techniques and skewed gates are deployed to dampen the glitch that occurs under the effect of radiation. Simulation results, layout structures of SET capture circuit and chain of combinational gates are presented.

Contributors

Agent

Created

Date Created
  • 2017

155704-Thumbnail Image.png

Electrostatic Analysis of Gate All Around (GAA) Nanowire over FinFET

Description

CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control

CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an undoped or fully depleted fin, which supports immunity from random dopant fluctuations (RDF – a phenomenon which causes a reduction in the threshold voltage and is prominent at sub 50 nm tech nodes due to lesser dopant atoms) and thus causes threshold voltage (Vth) roll-off by reducing the Vth. However, as the advanced CMOS technologies are shrinking down to a 5 nm technology node, subthreshold leakage and drain-induced-barrier-lowering (DIBL) are driving the introduction of new metal-oxide-semiconductor field-effect transistor (MOSFET) structures to improve performance. GAA field effect transistors are shown to be the potential candidates for these advanced nodes. In nanowire devices, due to the presence of the gate on all sides of the channel, DIBL should be lower compared to the FinFETs.

A 3-D technology computer aided design (TCAD) device simulation is done to compare the performance of FinFET and GAA nanowire structures with vertically stacked horizontal nanowires. Subthreshold slope, DIBL & saturation current are measured and compared between these devices. The FinFET’s device performance has been matched with the ASAP7 compact model with the impact of tensile and compressive strain on NMOS & PMOS respectively. Metal work function is adjusted for the desired current drive. The nanowires have shown better electrostatic performance over FinFETs with excellent improvement in DIBL and subthreshold slope. This proves that horizontal nanowires can be the potential candidate for 5 nm technology node. A GAA nanowire structure for 5 nm tech node is characterized with a gate length of 15 nm. The structure is scaled down from 7 nm node to 5 nm by using a scaling factor of 0.7.

Contributors

Agent

Created

Date Created
  • 2017

150197-Thumbnail Image.png

Design of an automated validation environment for a radiation hardened MIPS microprocessor

Description

Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major

Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and formal techniques. Simulation based microprocessor validation involves running millions of cycles using random or pseudo random tests and allows verification of the register transfer level (RTL) model against an architectural model, i.e., that the processor executes instructions as required. The validation effort involves model checking to a high level description or simulation of the design against the RTL implementation. Formal techniques exhaustively analyze parts of the design but, do not verify RTL against the architecture specification. The focus of this work is to implement a fully automated validation environment for a MIPS based radiation hardened microprocessor using simulation based approaches. The basic framework uses the classical validation approach in which the design to be validated is described in a Hardware Definition Language (HDL) such as VHDL or Verilog. To implement a simulation based approach a number of random or pseudo random tests are generated. The output of the HDL based design is compared against the one obtained from a "perfect" model implementing similar functionality, a mismatch in the results would thus indicate a bug in the HDL based design. Effort is made to design the environment in such a manner that it can support validation during different stages of the design cycle. The validation environment includes appropriate changes so as to support architecture changes which are introduced because of radiation hardening. The manner in which the validation environment is build is highly dependent on the specifications of the perfect model used for comparisons. This work implements the validation environment for two MIPS simulators as the reference model. Two bugs have been discovered in the RTL model, using simulation based approaches through the validation environment.

Contributors

Agent

Created

Date Created
  • 2011

151254-Thumbnail Image.png

Compact modeling and simulation for digital circuit aging

Description

Negative bias temperature instability (NBTI) is a leading aging mechanism in modern digital and analog circuits. Recent NBTI data exhibits an excessive amount of randomness and fast recovery, which are

Negative bias temperature instability (NBTI) is a leading aging mechanism in modern digital and analog circuits. Recent NBTI data exhibits an excessive amount of randomness and fast recovery, which are difficult to be handled by conventional power-law model (tn). Such discrepancies further pose the challenge on long-term reliability prediction under statistical variations and Dynamic Voltage Scaling (DVS) in real circuit operation. To overcome these barriers, the modeling effort in this work (1) practically explains the aging statistics due to randomness in number of traps with log(t) model, accurately predicting the mean and variance shift; (2) proposes cycle-to-cycle model (from the first-principle of trapping) to handle aging under multiple supply voltages, predicting the non-monotonic behavior under DVS (3) presents a long-term model to estimate a tight upper bound of dynamic aging over multiple cycles, and (4) comprehensively validates the new set of aging models with 65nm statistical silicon data. Compared to previous models, the new set of aging models capture the aging variability and the essential role of the recovery phase under DVS, reducing unnecessary guard-banding during the design stage. With CMOS technology scaling, design for reliability has become an important step in the design cycle, and increased the need for efficient and accurate aging simulation methods during the design stage. NBTI induced delay shifts in logic paths are asymmetric in nature, as opposed to averaging effect due to recovery assumed in traditional aging analysis. Timing violations due to aging, in particular, are very sensitive to the standby operation regime of a digital circuit. In this report, by identifying the critical moments in circuit operation and considering the asymmetric aging effects, timing violations under NBTI effect are correctly predicted. The unique contributions of the simulation flow include: (1) accurate modeling of aging induced delay shift due to threshold voltage (Vth) shift using only the delay dependence on supply voltage from cell library; (2) simulation flow for asymmetric aging analysis is proposed and conducted at critical points in circuit operation; (3) setup and hold timing violations due to NBTI aging in logic and clock buffer are investigated in sequential circuits and (4) proposed framework is tested in VLSI applications such DDR memory circuits. This methodology is comprehensively demonstrated with ISCAS89 benchmark circuits using a 45nm Nangate standard cell library characterized using predictive technology models. Our proposed design margin assessment provides design insights and enables resilient techniques for mitigating digital circuit aging.

Contributors

Agent

Created

Date Created
  • 2012

153490-Thumbnail Image.png

Automated place and route methodologies for multi-project test chips

Description

This work describes the development of automated flows to generate pad rings, mixed signal power grids, and mega cells in a multi-project test chip. There were three major design flows

This work describes the development of automated flows to generate pad rings, mixed signal power grids, and mega cells in a multi-project test chip. There were three major design flows that were created to create the test chip. The first was the pad ring which was used as the staring block for creating the test chip. This flow put all of the signals for the chip in the order that was wanted along the outside of the die along with creation of the power ring that is used to supply the chip with a robust power source.

The second flow that was created was used to put together a flash block that is based off of a XILIX XCFXXP. This flow was somewhat similar to how the pad ring flow worked except that optimizations and a clock tree was added into the flow. There was a couple of design redoes due to timing and orientation constraints.

Finally, the last flow that was created was the top level flow which is where all of the components are combined together to create a finished test chip ready for fabrication. The main components that were used were the finished flash block, HERMES, test structures, and a clock instance along with the pad ring flow for the creation of the pad ring and power ring.

Also discussed is some work that was done on a previous multi-project test chip. The work that was done was the creation of power gaters that were used like switches to turn the power on and off for some flash modules. To control the power gaters the functionality change of some pad drivers was done so that they output a higher voltage than what is seen in the core of the chip.

Contributors

Agent

Created

Date Created
  • 2015

158643-Thumbnail Image.png

Pre-Silicon Analysis of a Single Event Transient Pulse Measurement Test Structure in a FinFET Process

Description

A Single Event Transient (SET) is a transient voltage pulse induced by an ionizing radiation particle striking a combinational logic node in a circuit. The probability of a storage element

A Single Event Transient (SET) is a transient voltage pulse induced by an ionizing radiation particle striking a combinational logic node in a circuit. The probability of a storage element capturing the transient pulse depends on the width of the pulse. Measuring the rate of occurrence and the distribution of SET pulse widths is essential to understand the likelihood of soft errors and to develop cost-effective mitigation schemes. Existing research measures the pulse width of SETs in bulk Complementary Metal-Oxide-Semiconductor (CMOS) and Silicon On Insulator (SOI) technologies, but not on Fin Field-Effect Transistors (FinFETs). This thesis focuses on developing a test structure on the FinFET process to generate, propagate, and separate SETs and build a time-to-digital converter to measure the pulse width of SET.

The proposed SET test structure statistically separates SETs generated at NMOS and PMOS based on the difference in restoring current. It consists of N-collection devices to collect events at NMOS and P-collection devices to collect events at PMOS. The events that occur in PMOS of the N-collection device and NMOS of the P-collection device are false events. The logic gates of the collection devices are skewed to perform pulse expansion so that a minimally sustained SET propagates without getting suppressed by the contamination delay. A symmetric tree structure with an S-R latch event detector localizes the location of the SET. The Cartesian coordinates-based pulse injection structure injects external pulses at specific nodes to perform instrumentation and calibrate the measurement. A thermometer-encoded chain (vernier chain) with mismatched delay paths measures the width of the SET.

For low Linear Energy Transfer (LET) tests, the false events are entirely masked and do not propagate since the amount of charge that has to be deposited for successful event propagation is significantly high. In the case of high LET tests, the actual events and false events propagate, but they can be separated based on the SET location and the width of the output event. The vernier chain has a high measurement resolution of ~3.5ps, which aids in separating the events.

Contributors

Agent

Created

Date Created
  • 2020

156829-Thumbnail Image.png

Software Techniques For Dependable Execution

Description

Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and

Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and the number

of safety-critical applications – application with unacceptable consequences of failure. Software-level error resilience schemes are attractive because they can provide commercial-off-the-shelf microprocessors with adaptive and scalable reliability.

Among all software-level error resilience solutions, in-application instruction replication based approaches have been widely used and are deemed to be the most effective. However, existing instruction-based replication schemes only protect some part of computations i.e. arithmetic and logical instructions and leave the rest as unprotected. To improve the efficacy of instruction-level redundancy-based approaches, we developed several error detection and error correction schemes. nZDC (near Zero silent

Data Corruption) is an instruction duplication scheme which protects the execution of whole application. Rather than detecting errors on register operands of memory and control flow operations, nZDC checks the results of such operations. nZDC en

sures the correct execution of memory write instruction by reloading stored value and checking it against redundantly computed value. nZDC also introduces a novel control flow checking mechanism which replicates compare and branch instructions and

detects both wrong direction branches as well as unwanted jumps. Fault injection experiments show that nZDC can improve the error coverage of the state-of-the-art schemes by more than 10x, without incurring any more performance penalty. Further

more, we introduced two error recovery solutions. InCheck is our backward recovery solution which makes light-weighted error-free checkpoints at the basic block granularity. In the case of error, InCheck reverts the program execution to the beginning of last executed basic block and resumes the execution by the aid of preserved in formation. NEMESIS is our forward recovery scheme which runs three versions of computation and detects errors by checking the results of all memory write and branch

operations. In the case of a mismatch, NEMESIS diagnosis routine decides if the error is recoverable. If yes, NEMESIS recovery routine reverts the effect of error from the program state and resumes program normal execution from the error detection

point.

Contributors

Agent

Created

Date Created
  • 2018

151533-Thumbnail Image.png

Statistical characterization and decomposition of SRAM cell variability and aging

Description

Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative

Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.

Contributors

Agent

Created

Date Created
  • 2013