Matching Items (4)
136345-Thumbnail Image.png
Description
The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a

The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a tumor, as a tumor cannot grow larger than 1-2 mm3 without developing its own blood supply. Vascular disrupting agents, such as iodocombstatin, a derivative of combretastatin, can be used to effectively cut off the blood supply to a growing neoplasm, effectively inhibiting the supply of oxygen and nutrients needed for cell division Thus, VDAs have a very important implication in terms of the future of chemotherapy. A prodrug, defined as an agent that is inactive in the body until metabolized to yield the drug itself, was synthesized by combining iodocombstatin with a β-glucuronide linker. The prodrug is theoretically hydrolyzed in the body to afford the active drug by β-glucuronidase, an enzyme that is produced five times as much by cancer cells as by normal cells. This effectively creates a “magic-bullet” form of chemotherapy, known as Direct Enzyme Prodrug Therapy (DEPT).
ContributorsClark, Caroline Marie (Author) / Pettit, George Robert (Thesis director) / Melody, Noeleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
134792-Thumbnail Image.png
Description
While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather than from de novo mutations, but there remains the need

While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather than from de novo mutations, but there remains the need for a better understanding of how different drugs affect the fitness of clones within a tumor population and promote or delay the emergence of resistance. To this end, we have developed an assay that defines the in vitro rate of adaptation by analyzing the progressive change in sensitivity of a melanoma cell line to different treatments. We performed a proof-of-theory experiment based on the hypothesis that drugs that cause cell death (cytotoxic) impose a higher selection pressure for drug-resistant clones than drugs that cause cell-cycle arrest (cytostatic drugs), thereby resulting in a faster rate of adaptation. We tested this hypothesis by continuously treating the BRAFV600E melanoma cell line A375 with the cytotoxic MEK inhibitor E6201 and the cytostatic MEK inhibitor trametinib, both of which are known to be effective in the setting of constitutive oncogenic signaling driven by the BRAF mutation. While the identification of confounding factors prevented the direct comparison between E6201-treated and trametinib-treated cells, we observed that E6201-treated cells demonstrate decreased drug sensitivity compared to vehicle-treated cells as early as 18 days after treatment begins. We were able to quantify this rate of divergence at 2.6% per passage by measuring the increase over time in average viability difference between drug-treated and vehicle-treated cells within a DDR analysis. We argue that this value correlates to the rate of adaptation. Furthermore, this study includes efforts to establish a barcoded cell line to allow for individual clonal tracking and efforts to identify synergistic and antagonist drug combinations for use in future experiments. Ultimately, we describe here a novel system capable of quantifying adaptation rate in cancer cells undergoing treatment, and we anticipate that this assay will prove helpful in identifying treatment options that circumvent or delay resistance through future hypothesis-driven experiments.
ContributorsDe Luca, Valerie Jean (Author) / Wilson Sayres, Melissa (Thesis director) / Trent, Jeff (Committee member) / Hendricks, William (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
156520-Thumbnail Image.png
Description
Study of canine cancer’s molecular underpinnings holds great potential for informing veterinary and human oncology. Sporadic canine cancers are highly abundant (~4 million diagnoses/year in the United States) and the dog’s unique genomic architecture due to selective inbreeding, alongside the high similarity between dog and human genomes both confer power

Study of canine cancer’s molecular underpinnings holds great potential for informing veterinary and human oncology. Sporadic canine cancers are highly abundant (~4 million diagnoses/year in the United States) and the dog’s unique genomic architecture due to selective inbreeding, alongside the high similarity between dog and human genomes both confer power for improving understanding of cancer genes. However, characterization of canine cancer genome landscapes has been limited. It is hindered by lack of canine-specific tools and resources. To enable robust and reproducible comparative genomic analysis of canine cancers, I have developed a workflow for somatic and germline variant calling in canine cancer genomic data. I have first adapted a human cancer genomics pipeline to create a semi-automated canine pipeline used to map genomic landscapes of canine melanoma, lung adenocarcinoma, osteosarcoma and lymphoma. This pipeline also forms the backbone of my novel comparative genomics workflow.

Practical impediments to comparative genomic analysis of dog and human include challenges identifying similarities in mutation type and function across species. For example, canine genes could have evolved different functions and their human orthologs may perform different functions. Hence, I undertook a systematic statistical evaluation of dog and human cancer genes and assessed functional similarities and differences between orthologs to improve understanding of the roles of these genes in cancer across species. I tested this pipeline canine and human Diffuse Large B-Cell Lymphoma (DLBCL), given that canine DLBCL is the most comprehensively genomically characterized canine cancer. Logistic regression with genes bearing somatic coding mutations in each cancer was used to determine if conservation metrics (sequence identity, network placement, etc.) could explain co-mutation of genes in both species. Using this model, I identified 25 co-mutated and evolutionarily similar genes that may be compelling cross-species cancer genes. For example, PCLO was identified as a co-mutated conserved gene with PCLO having been previously identified as recurrently mutated in human DLBCL, but with an unclear role in oncogenesis. Further investigation of these genes might shed new light on the biology of lymphoma in dogs and human and this approach may more broadly serve to prioritize new genes for comparative cancer biology studies.
ContributorsSivaprakasam, Karthigayini (Author) / Dinu, Valentin (Thesis advisor) / Trent, Jeffrey (Thesis advisor) / Hendricks, William (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2018
131931-Thumbnail Image.png
Description
Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%,

Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%, but recently we have identified sensitivity of SCCOHT models to a natural product, triptolide. This study aims to ascertain the mechanism of action of triptolide. Previous SCCOHT epigenetic drug research has shown that some drugs reverse SMARCA2 epigenetic silencing to inhibit tumor growth, therefore it is hypothesized that triptolide acts the same and restores SWI/SNF function. Cells treated with triptolide have no change in SMARCA2 expression, suggesting that re-expression of epigenetically silenced tumor suppressor gene does not underlie its mechanism of action. Growth rates following triptolide treatment were observed in the presence and absence of SMARCA4, but no difference in sensitivity was observed. Thus, it is not likely that triptolide acts by restoring SWI/SNF. Others have observed that triptolide acts on xeroderma pigmentosa type B protein (XPB), a component of super-enhancers, which are DNA regions with high levels of transcription that regulate genes responsible for cell identity and oncogenes driving tumorigenesis. Both SCCOHT-1 and BIN67 cell lines treated with triptolide displayed lower expression of the super-enhancer associated MYC oncogene compared to untreated cells, supporting the theory that triptolide could be inhibiting super-enhancers regulating oncogenes.. A western blot confirmed reduced protein levels of RNA polymerase II and bromodomain 4 (BRD4), two essential components found at high levels at super-enhancers, in BIN67 cells treated with triptolide. ChIP-sequencing of Histone H3 Lysine-27 Acetylation (H3K27ac) marks in BIN67 and SCCOHT-1 cell lines identified super-enhancers in SCCOHT using tools CREAM and ROSE, which were mapped to neighboring genes associated genes and compared with the COSMIC database to identify oncogenes, of which the top 11 were examined by qRT-PCR to ascertain whether triptolide reduces their expression. It has been found that 6 out of 11 of the oncogenes examined (SALL4, MYC, SGK1, HIST1H3B, HMGA2, and CALR) decreased in expression when treated with triptolide. Thus, there is reason to believe that triptolide’s mechanism of action is via inhibition of super-enhancers that regulate oncogene expression.
ContributorsViloria, Nicolle Angela (Author) / Lake, Douglas (Thesis director) / Hendricks, William (Committee member) / Lang, Jessica (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05