Matching Items (20)
151369-Thumbnail Image.png
Description
This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space

This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.
ContributorsSamantray, Prasant (Author) / Parikh, Maulik (Thesis advisor) / Davies, Paul (Committee member) / Vachaspati, Tanmay (Committee member) / Easson, Damien (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2012
153320-Thumbnail Image.png
Description
This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of

This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.
ContributorsChatterjee, Saugata (Author) / Parikh, Maulik K (Thesis advisor) / Easson, Damien (Committee member) / Davies, Paul (Committee member) / Arizona State University (Publisher)
Created2014
150316-Thumbnail Image.png
Description
The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been

The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been conducted at Jefferson Lab using a tagged polarized photon beam and a frozen spin polarized target (FROST). The results presented here were taken during the first running period of FROST using the CLAS detector at Jefferson Lab with photon energies ranging from 329 MeV to 2.35 GeV. Data are presented for the E polarization observable for eta meson photoproduction on the proton from threshold (W=1500 MeV) to W=1900 MeV. Comparisons to the partial wave analyses of SAID and Bonn-Gatchina along with the isobar analysis of eta-MAID are made. These results will help distinguish between current theoretical predictions and refine future theories.
ContributorsMorrison, Brian (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Shovkovy, Igor (Committee member) / Davies, Paul (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2011
135853-Thumbnail Image.png
Description
The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A calculation of the dwell time for two successive rectangular barriers in the opaque limit is given and the result depends

The longstanding issue of how much time it takes a particle to tunnel through quantum barriers is discussed; in particular, the phenomenon known as the Hartman effect is reviewed. A calculation of the dwell time for two successive rectangular barriers in the opaque limit is given and the result depends on the barrier widths and hence does not lead to superluminal tunneling or the Hartman effect.
ContributorsMcDonald, Scott (Author) / Davies, Paul (Thesis director) / Comfort, Joseph (Committee member) / McCartney, M. R. (Committee member) / Barrett, The Honors College (Contributor)
Created2009-05
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description

Assembly theory as a way of defining the biotic/abiotic boundary has been established for molecules, but not yet for crystal structures. This is an assembly algorithm that calculates the complexity of biotic and abiotic minerals in order to constrain the quantitative fundamentals of "life". The calculation utilizes the Hermann-Mauguin space

Assembly theory as a way of defining the biotic/abiotic boundary has been established for molecules, but not yet for crystal structures. This is an assembly algorithm that calculates the complexity of biotic and abiotic minerals in order to constrain the quantitative fundamentals of "life". The calculation utilizes the Hermann-Mauguin space group symmetry and Wyckoff sites of mineral unit cells to calculate the path-building complexity of a crystal structure. 5,644 minerals from the American Mineralogist COD database were run through the algorithm. The five structures with the highest information complexity were a mix of biotic and abiotic minerals, indicating that further calculations on larger datasets would be pertinent. Furthermore, an expansion of the definition of mineral to include biotically synthesized solids would further research efforts aimed at using minerals as possible biomarkers.

ContributorsSharma, Sonakshi (Author) / Walker, Sara (Thesis director) / Malloy, John (Committee member) / Bromley, Megan (Committee member) / Millsaps, Camerian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05
187562-Thumbnail Image.png
Description
Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both computation and measurement. The most common observable in theories of

Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both computation and measurement. The most common observable in theories of inflation is an equal-time correlation function, typically computed in the in-in formalism. Weinberg improved upon in-in perturbation theory by reducing the perturbative expansion to a series of nested commutators. Several authors noted a technical difference between Weinberg's formula and standard in-in perturbation theory. In this work, a proof of the order-by-order equivalence of Weinberg's commutators to traditional in-in perturbation theory is presented for all masses and commonly studied spins in a broad class of FLRW spacetimes. Then, a study of the effects of a sector of conformal matter coupled solely to gravity is given. The results can constrain N-naturalness as a complete solution of the hierarchy problem, given a measurement of the tensor fluctuations from inflation. The next part of this work focuses on the thermodynamics of de Sitter. It has been known for decades that there is a temperature associated with a cosmological horizon, which matches the thermal response of a comoving particle detector in de Sitter. A model of a perfectly reflecting cavity is constructed with fixed physical size in two-dimensional de Sitter spacetime. The natural ground state inside the box yields no response from a comoving particle detector, implying that the box screens out the thermal effects of the de Sitter horizon. The total energy inside the box is also shown to be smaller than an equivalent volume of the Bunch-Davies vacuum state. The temperature difference across the wall of the box might drive a heat engine, so an analytical model of the Szil\'ard engine is constructed and studied. It is found that all relevant thermodynamical quantities can be computed exactly at all stages of the engine cycle.
ContributorsThomas, Logan (Author) / Baumgart, Matthew (Thesis advisor) / Davies, Paul (Committee member) / Easson, Damien (Committee member) / Keeler, Cynthia (Committee member) / Arizona State University (Publisher)
Created2023
189368-Thumbnail Image.png
Description
The origin of life remains unknowable to current science. Scientists cannot see into the origin of life on Earth, and until humanity discovers life elsewhere in the universe and begin to compare this alien life to Earth, it is likely to be undiscoverable. However, alien life may be so different

The origin of life remains unknowable to current science. Scientists cannot see into the origin of life on Earth, and until humanity discovers life elsewhere in the universe and begin to compare this alien life to Earth, it is likely to be undiscoverable. However, alien life may be so different from life as it is currently known that it may not be recognizable when it is found. Therefore, astrobiology needs a universal theory for life to avoid detection methods being biased towards Earth-based life. This also extends to the instrumentation sent into space, which should be built to detect universal properties of life. Assembly theory, a novel measure of complexity and arguably the only testable agnostic biosignature in current science, is used here to provide precision requirements for mass spectrometry instrumentation on future spaceflight missions with the goal of finding life elsewhere. Universal properties are not only applicable to the origins of life, but also to technologically advanced societies. Predictable patterns are found in today’s industrially based society, such as energy usage as a function of population density. These patterns may serve as the basis for technosignatures that are evidence of advanced extraterrestrial civilizations. Patters found in patent chemistry are explored, as well as predictions of chemical complexity based on assembly theory, to determine how complex chemistry is built by human society and which statistical patterns may be found in extraterrestrial civilizations. Moving beyond astrobiology, science cannot be done in a vacuum but must be communicated and taught to others. Topics such as a universal definition of life, biosignatures, and increasing complexity mean nothing without interest and engagement from others, particularly students. To this end, transformative pedagogical tools are used, particularly sociotransformative constructivism (sTc), to build and teach an Earth Science and Astrobiology curriculum to a classroom of high school incarcerated students. The impact of this class on their science learning and how they personally identify as scientists is studied.
ContributorsMalloy, John (Author) / Walker, Sara (Thesis advisor) / Reano, Darryl (Committee member) / Hartnett, Hilairy (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Cronin, Leroy (Committee member) / Arizona State University (Publisher)
Created2023
158889-Thumbnail Image.png
Description
A swarm describes a group of interacting agents exhibiting complex collective behaviors. Higher-level behavioral patterns of the group are believed to emerge from simple low-level rules of decision making at the agent-level. With the potential application of swarms of aerial drones, underwater robots, and other multi-robot systems, there has been

A swarm describes a group of interacting agents exhibiting complex collective behaviors. Higher-level behavioral patterns of the group are believed to emerge from simple low-level rules of decision making at the agent-level. With the potential application of swarms of aerial drones, underwater robots, and other multi-robot systems, there has been increasing interest in approaches for specifying complex, collective behavior for artificial swarms. Traditional methods for creating artificial multi-agent behaviors inspired by known swarms analyze the underlying dynamics and hand craft low-level control logics that constitute the emerging behaviors. Deep learning methods offered an approach to approximate the behaviors through optimization without much human intervention.

This thesis proposes a graph based neural network architecture, SwarmNet, for learning the swarming behaviors of multi-agent systems. Given observation of only the trajectories of an expert multi-agent system, the SwarmNet is able to learn sensible representations of the internal low-level interactions on top of being able to approximate the high-level behaviors and make long-term prediction of the motion of the system. Challenges in scaling the SwarmNet and graph neural networks in general are discussed in detail, along with measures to alleviate the scaling issue in generalization is proposed. Using the trained network as a control policy, it is shown that the combination of imitation learning and reinforcement learning improves the policy more efficiently. To some extent, it is shown that the low-level interactions are successfully identified and separated and that the separated functionality enables fine controlled custom training.
ContributorsZhou, Siyu (Author) / Ben Amor, Heni (Thesis advisor) / Walker, Sara I (Thesis advisor) / Davies, Paul (Committee member) / Pavlic, Ted (Committee member) / Presse, Steve (Committee member) / Arizona State University (Publisher)
Created2020
130873-Thumbnail Image.png
Description
Western culture has oversimplified and mythologized the possibility of first contact with extraterrestrial intelligence. Whether through anthropocentrism, lack of contextual literature and/or available knowledge, or simple misunderstanding, humanity has failed to fully consider the impacts of seeking out alien life. Instead, humanity’s cultural and political representations of extraterrestrials tell us

Western culture has oversimplified and mythologized the possibility of first contact with extraterrestrial intelligence. Whether through anthropocentrism, lack of contextual literature and/or available knowledge, or simple misunderstanding, humanity has failed to fully consider the impacts of seeking out alien life. Instead, humanity’s cultural and political representations of extraterrestrials tell us a great deal about the people behind the stories—all of us stuck together on our pale blue dot. This thesis explores the mythological character that is ever-present in the extraterrestrial conversation, and how past and current cultural creators in the global West have perpetuated and changed that paradigm. This thesis is also an exploration of the ways we envision our ability to contact and interact with an unknown extraterrestrial other—in many ways mythological, and in some ways as powerful symbols for struggles against oppression. I argue for a more nuanced, creative, and scientifically driven representation and consideration of first contact with extraterrestrial intelligence.
ContributorsDean, Jake William (Author) / Martin, Thomas W. (Thesis director) / Walker, Sara (Committee member) / Finn, Ed (Committee member) / Historical, Philosophical & Religious Studies (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor, Contributor, Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12