Matching Items (21)

132193-Thumbnail Image.png

The Capon-Bartlett Cross Spectrum Resolution Study

Description

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation. The Capon algorithm is known as the "adaptive" approach to power spectrum estimation because its filter impulse responses are adapted to fit the characteristics of the data. The Bartlett method is known as the "conventional" approach to power spectrum estimation (PSE) and has a fixed deterministic filter. Both techniques rely on the Sample Covariance Matrix (SCM). The first objective of this project is to analyze the origins and characteristics of the Capon and Bartlett methods to understand their abilities to resolve signals closely spaced in frequency. Taking into consideration the Capon and Bartlett's reliance on the SCM, there is a novelty in combining these two algorithms using their cross-coherence. The second objective of this project is to analyze the performance of the Capon-Bartlett Cross Spectra. This study will involve Matlab simulations of known test cases and comparisons with approximate theoretical predictions.

Contributors

Agent

Created

Date Created
  • 2019-05

131166-Thumbnail Image.png

Adaptive Radar Matched Filter Saddlepoint Approximation Study

Description

Radar systems seek to detect targets in some search space (e.g. volume of airspace, or area on the ground surface) by actively illuminating the environment with radio waves. This illumination

Radar systems seek to detect targets in some search space (e.g. volume of airspace, or area on the ground surface) by actively illuminating the environment with radio waves. This illumination yields a return from targets of interest as well as highly reflective terrain features that perhaps are not of interest (called clutter). Data adaptive algorithms are therefore employed to provide robust detection of targets against a background of clutter and other forms of interference. The adaptive matched filter (AMF) is an effective, well-established detection statistic whose exact probability density function (PDF) is known under prevalent radar system model assumptions. Variations of this approach, however, lead to tests whose PDFs remain unknown or incalculable. This project will study the effectiveness of saddlepoint methods applied to approximate the known pdf of the clairvoyant matched filter, using MATLAB to complete the numerical calculations. Specifically, the approximation was used to compute tail probabilities for a range of thresholds, as well as compute the threshold and probability of detection for a specific desired probability of false alarm. This was compared to the same values computed using the known exact PDF of the filter, with the comparison demonstrating high levels of accuracy for the saddlepoint approximation. The results are encouraging, and justify further study of the approximation as applied to more strained or complicated scenarios.

Contributors

Agent

Created

Date Created
  • 2020-05

149916-Thumbnail Image.png

Active dust devils on Mars: a comparison of six spacecraft landing sites

Description

Dust devils have proven to be commonplace on Mars, although their occurrence is unevenly distributed across the surface. They were imaged or inferred by all six successful landed spacecraft: the

Dust devils have proven to be commonplace on Mars, although their occurrence is unevenly distributed across the surface. They were imaged or inferred by all six successful landed spacecraft: the Viking 1 and 2 Landers (VL-1 and VL-2), Mars Pathfinder Lander, the Mars Exploration Rovers Spirit and Opportunity, and the Phoenix Mars Lander. Comparisons of dust devil parameters were based on results from optical and meteorological (MET) detection campaigns. Spatial variations were determined based on comparisons of their frequency, morphology, and behavior. The Spirit data spanning three consecutive martian years is used as the basis of comparison because it is the most extensive on this topic. Average diameters were between 8 and 115 m for all observed or detected dust devils. The average horizontal speed for all of the studies was roughly 5 m/s. At each site dust devil densities peaked between 09:00 and 17:00 LTST during the spring and summer seasons supporting insolation-driven convection as the primary formation mechanism. Seasonal number frequency averaged ~1 dust devils/ km2/sol and spanned a total of three orders of magnitude. Extrapolated number frequencies determined for optical campaigns at the Pathfinder and Spirit sites accounted for temporal and spatial inconsistencies and averaged ~19 dust devils/km2/sol. Dust fluxes calculated from Pathfinder data (5x10-4 kg/m2/s and 7x10-5 kg/m2/s) were well with in the ranges calculated from Spirit data (4.0x10-9 to 4.6x10-4 kg/m2/s for Season One, 5.2x10-7 to 6.2x10-5 kg/m2/s during Season Two, and 1.5x10-7 to 1.6x10-4 kg/m2/s during Season Three). Based on the results a campaign is written for improvements in dust devil detection at the Mars Science Laboratory's (MSL) site. Of the four remaining candidate MSL sites, the dusty plains of Gale crater may potentially be the site with the highest probability of dust devil activity.

Contributors

Agent

Created

Date Created
  • 2011

151696-Thumbnail Image.png

High-resolution Martian soil thickness derived from yearly surface temperatures

Description

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.

Contributors

Agent

Created

Date Created
  • 2013

150434-Thumbnail Image.png

Exploring the history of India-Eurasia collision and subsequent deformation in the Indus Basin, NW Indian Himalaya

Description

Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this

Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the Ladakh region in the northwestern Indian Himalaya, where early workers suggested that sedimentary deposits of the Indus Basin molasse sequence, located in the suture zone, preserve a record of the early evolution of orogenesis, including initial collision between India and Eurasia. Recent studies have challenged this interpretation, but resolution of the issue has been hampered by poor accessibility, paucity of robust depositional age constraints, and disputed provenance of many units in the succession. To achieve a better understanding of the stratigraphy of the Indus Basin, multispectral remote sensing image analysis resulted in a new geologic map that is consistent with field observations and previously published datasets, but suggests a substantial revision and simplification of the commonly assumed stratigraphic architecture of the basin. This stratigraphic framework guided a series of new provenance studies, wherein detrital U-Pb geochronology, 40Ar/39Ar and (U-Th)/He thermochronology, and trace-element geochemistry not only discount the hypothesis that collision began in the Early Oligocene, but also demonstrate that both Indian and Eurasian detritus arrived in the basin prior to deposition of the last marine limestone, constraining the age of collision to older than Early Eocene. Detrital (U-Th)/He thermochronology further elucidates the thermal history of the basin. Thus, we constrain backthrusting, thought to be an important mechanism by which Miocene convergence was accommodated, to between 11-7 Ma. Finally, an unprecedented conventional (U-Th)/He thermochronologic dataset was generated from a modern river sand to assess steady state assumptions of the source region. Using these data, the question of the minimum number of dates required for robust interpretation was critically evaluated. The application of a newly developed (U-Th)/He UV-laser-microprobe thermochronologic technique confirmed the results of the conventional dataset. This technique improves the practical utility of detrital mineral (U-Th)/He thermochronology, and will facilitate future studies of this type.

Contributors

Agent

Created

Date Created
  • 2011

151710-Thumbnail Image.png

The effect of Rayleigh-Taylor instabilities on the thickness of undifferentiated crust on Kuiper Belt objects like Charon

Description

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales.

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600 km) have surfaces too cold to permit the separation of rock and ice, and should always retain thick (~ 85 km) crusts, despite the partial differentiation of rock and ice inside the body. The retention of a thermally insulating, undifferentiated crust is favorable to the maintenance of subsurface liquid and potentially cryovolcanism on the KBO surface. A potential objection to these models is that the dense crust of rock and ice overlying an ice mantle represents a gravitationally unstable configuration that should overturn by Rayleigh-Taylor (RT) instabilities. I have calculated the growth rate of RT instabilities at the ice-crust interface, including the effect of rock on the viscosity. I have identified a critical ice viscosity for the instability to grow significantly over the age of the solar system. I have calculated the viscosity as a function of temperature for conditions relevant to marginal instability. I find that RT instabilities on a Charon-sized KBO require temperatures T > 143 K. Including this effect in thermal evolution models of KBOs, I find that the undifferentiated crust on KBOs is thinner than previously calculated, only ~ 50 km. While thinner, this crustal thickness is still significant, representing ~ 25% of the KBO mass, and helps to maintain subsurface liquid throughout most of the KBO's history.

Contributors

Agent

Created

Date Created
  • 2013

154927-Thumbnail Image.png

Amorphous weathering products: evidence for basalt-water interactions and the relevance to paleo-environments on Mars

Description

Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary

Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding the geologic history of Mars. Secondary amorphous silicates are poorly understood and underrepresented in spectral libraries because they lack the long-range structural order that makes their crystalline counterparts identifiable in most analytical techniques. Fortunately, even amorphous materials have some degree of short-range order so that distinctions can be made with careful characterization.

Two sets of laboratory experiments were used to produce and characterize amorphous weathering products under probable conditions for the Martian surface, and one global spectral analysis using thermal-infrared (TIR) data from the Thermal Emission Spectrometer (TES) instrument was used to constrain variations in amorphous silicates across the Martian surface. The first set of experiments altered crystalline and glassy basalt samples in an open system under strong (pH 1) and moderate (pH 3) acidic conditions. The second set of experiments simulated a current-day Martian weathering scenario involving transient liquid water where basalt glass weathering solutions, formed in circumneutral (pH ~5.5 and 7) conditions, were rapidly evaporated, precipitating amorphous silicates. The samples were characterized using visible and near-infrared (VNIR) spectroscopy, TIR spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD).

All experiments formed amorphous silicate phases that are new to spectral libraries. Moderately acidic alteration experiments produced no visible or spectral evidence of alteration products, whereas exposure of basalt glass to strongly acidic fluids produced silica-rich alteration layers that are spectrally consistent with VNIR and TIR spectra from the circum-polar region of Mars, indicating this region has undergone acidic weathering. Circum-netural pH basalt weathering solution precipitates are consistent with amorphous materials measured by rovers in soil and rock surface samples in Gale and Gusev Craters, suggesting transient water interactions over the last 3 billion years. Global spectral analyses determine that alteration conditions have varied across the Martian surface, and that alteration has been long lasting.

Contributors

Agent

Created

Date Created
  • 2016

157675-Thumbnail Image.png

The Geologic History of the Hypanis Deposit, Mars and Ballistic Modeling of Lunar Impact Ejecta

Description

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional and global history of water on Mars is crucial to understanding how the planet evolved, where to focus future exploration, and implications for water on Earth.

Many sites on Mars contain layered sedimentary deposits, sinuous valleys with delta shaped deposits, and other indications of large lakes. The Hypanis deposit is a unique endmember in this set of locations as it appears to be the largest ancient river delta identified on the planet, and it appears to have no topographic boundary, implying deposition into a sea. I have used a variety of high-resolution remote sensing techniques and geologic mapping techniques to present a new model of past water activity in the region.

I gathered new orbital observations and computed thermal inertia, albedo, elevation, and spectral properties of the Hypanis deposit. I measured the strike and dip of deposit layers to interpret the sedimentary history. My results indicate that Hypanis was formed in a large calm lacustrine setting. My geomorphic mapping of the deposit and catchment indicates buried volatile-rich sediments erupted through the Chryse basin fill, and may be geological young or ongoing. Collectively, my results complement previous studies that propose a global paleoshoreline, and support interpretations that Mars had an ocean early in its history. Future missions to the Martian surface should consider Hypanis as a high-value sampling opportunity.

Contributors

Agent

Created

Date Created
  • 2019

157585-Thumbnail Image.png

Identification and Quantitative Classification of Europa’s Microfeatures: Implications for Microfeature Formation Models and the Europa Clipper Flagship Mission

Description

Jupiter’s moon Europa is an active target of research because of its unique geology and its potential for habitability. Europa’s icy chaos disrupts and transforms the previous terrain, suggesting melting

Jupiter’s moon Europa is an active target of research because of its unique geology and its potential for habitability. Europa’s icy chaos disrupts and transforms the previous terrain, suggesting melting is involved. Chaos occurs alongside several types of endogenic surface features. These microfeatures are under <100 km2 in area and include uplifts and domes, pits, spots, and hybrid features. The distribution of microfeatures is known in the ~10% of the Europa’s surface that are covered by the regional mosaics (“RegMaps”). The efforts to connect microfeature formation to any kind of heat transport in Europa are confounded because microfeatures are difficult to identify outside of RegMaps because of low image resolutions. Finding microfeatures outside of RegMaps would provide new observational constraints for microfeature formation models.

First, I mapped microfeatures across four of Europa’s RegMaps and validated them against other mapping datasets. Microchaos features are the most numerous, followed by pits, domes, then hybrids. Spots are the least common features, and the smallest. Next, I mapped features in low-resolution images that covered the E15RegMap01 area to determine error rates and sources of omission or misclassification for features mapped in low-resolution images. Of all features originally mapped in the RegMap, pits and domes were the least likely to be re-mapped or positively identified (24.2% and 5%, respectively). Chaos, spots, and hybrids were accurately classified over 70% of the time. Quantitatively classifying these features using discriminant function analysis yielded comparable values of accuracy when compared to a human mapper. Finally, nearest-neighbor clustering analyses were used to show that pits are clustered in all regions, while chaos, domes, and hybrids vary in terms of their spatial clustering.

This work suggests that the most likely processes for microfeature formations is either the evolution of liquid water sills within Europa’s ice shell or cryovolcanism. Future work extending to more areas outside of the RegMaps can further refine microfeature formation models. The detection of liquid water at or near the surface is a major goal of multiple upcoming Europa missions; this work provides predictions that can be directly tested by these missions to maximize their scientific return.

Contributors

Agent

Created

Date Created
  • 2019

157757-Thumbnail Image.png

Software defined pulse-doppler radar for over-the-air applications: the joint radar-communications experiment

Description

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and dynamic hardware package that can, with relatively low overhead, be incorporated into other experimental systems. This radar system will be considered for implementation into existing over-the-air Joint Radar- Communications (JRC) spectrum sharing experiments. The JRC system considers a co-designed architecture in which a communications user and a radar user share the same spectral allocation. Where the two systems would traditionally consider one another a source of interference, the receiver is able to decode communications information and discern target information via pulse-doppler radar simultaneously.

Contributors

Agent

Created

Date Created
  • 2019