Matching Items (24)

134662-Thumbnail Image.png

Data and Predictive Analytics for Energy Use

Description

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances.

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering assumptions can result when there is a lack of understanding on how energy systems can operate in real-world applications. Energy systems are complex, which results in unknown system behaviors, due to an unknown structural system model. Currently, there exists a lack of data mining techniques in reverse engineering, which are needed to develop efficient structural system models. In this project, a new type of reverse engineering algorithm has been applied to a year's worth of energy data collected from an ASU research building called MacroTechnology Works, to identify the structural system model. Developing and understanding structural system models is the first step in creating accurate predictive analytics for energy production. The associative network of the building's data will be highlighted to accurately depict the structural model. This structural model will enhance energy infrastructure systems' energy efficiency, reduce energy waste, and narrow the gaps between energy infrastructure design, planning, operation and management (DPOM).

Contributors

Agent

Created

Date Created
  • 2016-12

134875-Thumbnail Image.png

An Analysis of Craft Labor Productivity

Description

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.

Contributors

Created

Date Created
  • 2016-12

135209-Thumbnail Image.png

The LEED Rating System and the International Green Construction Code: A Comparative Analysis of Green Building Design Approaches

Description

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code, written with the same structure as many building codes. It is a standard that can be enforced if a city's government decides to adopt it. When IgCC is enforced, the buildings either meet all of the requirements set forth in the document or it fails to meet the code standards. The LEED Rating System, on the other hand, is not a building code. LEED certified buildings are built according to the standards of their local jurisdiction and in addition to that, building owners can chose to pursue a LEED certification. This is a rating system that awards points based on the sustainable measures achieved by a building. A comparison of these green building systems highlights their accomplishments in terms of reduced electricity usage, usage of low-impact materials, indoor environmental quality and other innovative features. It was determined that in general IgCC is more holistic, stringent approach to green building. At the same time the LEED rating system a wider variety of green building options. In addition, building data from LEED certified buildings was complied and analyzed to understand important trends. Both of these methods are progressing towards low-impact, efficient infrastructure and a side-by-side comparison, as done in this research, shed light on the strengths and weaknesses of each method, allowing for future improvements.

Contributors

Created

Date Created
  • 2016-05

127964-Thumbnail Image.png

Analyzing Arizona OSHA Injury Reports Using Unsupervised Machine Learning

Description

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards.

Contributors

Created

Date Created
  • 2016-05-20

127833-Thumbnail Image.png

Semi-supervised Energy Modeling (SSEM) for Building Clusters Using Machine Learning Techniques

Description

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss between the supply (energy production sources) and demand (buildings and cities consumption), this paper proposes a Semi-Supervised Energy Model (SSEM) to analyse different loss factors for a building cluster. This is done by deep machine learning by training machines to semi-supervise the learning, understanding and manage the process of energy losses. Semi-Supervised Energy Model (SSEM) aims at understanding the demand-supply characteristics of a building cluster and utilizes the confident unlabelled data (loss factors) using deep machine learning techniques. The research findings involves sample data from one of the university campuses and presents the output, which provides an estimate of losses that can be reduced. The paper also provides a list of loss factors that contributes to the total losses and suggests a threshold value for each loss factor, which is determined through real time experiments. The conclusion of this paper provides a proposed energy model that can provide accurate numbers on energy demand, which in turn helps the suppliers to adopt such a model to optimize their supply strategies.

Contributors

Agent

Created

Date Created
  • 2015-09-14

127865-Thumbnail Image.png

A Non-stationary Analysis Using Ensemble Empirical Mode Decomposition to Detect Anomalies in Building Energy Consumption

Description

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures.

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition (EEMD) method. The finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode decomposition of three important type of institutional buildings.

Contributors

Agent

Created

Date Created
  • 2016-05-20

133914-Thumbnail Image.png

Building Management System Integration: Energy Data Analytics

Description

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.

Contributors

Agent

Created

Date Created
  • 2018-05

155812-Thumbnail Image.png

Human-Centered Automation for Resilience in Acquiring Construction Field Information

Description

Resilient acquisition of timely, detailed job site information plays a pivotal role in maintaining the productivity and safety of construction projects that have busy schedules, dynamic workspaces, and unexpected events.

Resilient acquisition of timely, detailed job site information plays a pivotal role in maintaining the productivity and safety of construction projects that have busy schedules, dynamic workspaces, and unexpected events. In the field, construction information acquisition often involves three types of activities including sensor-based inspection, manual inspection, and communication. Human interventions play critical roles in these three types of field information acquisition activities. A resilient information acquisition system is needed for safer and more productive construction. The use of various automation technologies could help improve human performance by proactively providing the needed knowledge of using equipment, improve the situation awareness in multi-person collaborations, and reduce the mental workload of operators and inspectors.

Unfortunately, limited studies consider human factors in automation techniques for construction field information acquisition. Fully utilization of the automation techniques requires a systematical synthesis of the interactions between human, tasks, and construction workspace to reduce the complexity of information acquisition tasks so that human can finish these tasks with reliability. Overall, such a synthesis of human factors in field data collection and analysis is paving the path towards “Human-Centered Automation” (HCA) in construction management. HCA could form a computational framework that supports resilient field data collection considering human factors and unexpected events on dynamic job sites.

This dissertation presented an HCA framework for resilient construction field information acquisition and results of examining three HCA approaches that support three use cases of construction field data collection and analysis. The first HCA approach is an automated data collection planning method that can assist 3D laser scan planning of construction inspectors to achieve comprehensive and efficient data collection. The second HCA approach is a Bayesian model-based approach that automatically aggregates the common sense of people from the internet to identify job site risks from a large number of job site pictures. The third HCA approach is an automatic communication protocol optimization approach that maximizes the team situation awareness of construction workers and leads to the early detection of workflow delays and critical path changes. Data collection and simulation experiments extensively validate these three HCA approaches.

Contributors

Agent

Created

Date Created
  • 2017

156056-Thumbnail Image.png

A New Approach to Impacting the Construction Industry

Description

Construction industry performance (schedule, budget, and customer satisfaction) has not improved over the last 20 years. This investigation proposes that academic/industry research using actual project data may have more impact

Construction industry performance (schedule, budget, and customer satisfaction) has not improved over the last 20 years. This investigation proposes that academic/industry research using actual project data may have more impact on improving industry performance than traditional survey-based research. The authors utilize the CIB and CIB W117 platforms to proliferate the concept of academic/industry test results to increase the impact on the construction industry. The authors propose to use the existing journal and then share the journal papers on an online platform (ResearchGate.net) ensuring a faster proliferation of the key academic/industry test results into the academic research community. The mechanism of the academic/industry test results will have more of an impact on industry practices than the traditional publication systems, which concentrate on literature reviews and surveys to collect industry opinions and analyze the information to change industry practices. The proliferation of industry research results will create transparency in the construction industry and the academic research community.

Contributors

Agent

Created

Date Created
  • 2017

158113-Thumbnail Image.png

The Identification of a Potential Solution to Improve the Construction Project Performance in the Chinese Construction Industry: by Analyzing Similar Construction Industries in Other Developing Countries

Description

The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is

The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability of the Chinese Construction Industry is low compared to similar sized construction industries (United States, United Kingdom, etc.). In addition to the low efficiency of the Chinese Construction Industry, there is minimal documentation available showing the performance of the Chinese Construction Industry (projects completed on time, on budget, and customer satisfaction ratings).

The purpose of this research is to investigate potential solutions that could address the poor efficiency and performance of the Chinese Construction Industry. This research is divided into three phases; first, a literature review to identify countries that have similar construction industries to the Chinese Construction Industry. The second phase is to compare the risks and identify solutions that are proposed to increase the performance of similar construction industries and the Chinese Construction Industry. The third phase is to create a survey from the literature-based information to validate the concepts with the Chinese Construction Industry professionals and stakeholders.

Contributors

Agent

Created

Date Created
  • 2020