Matching Items (3)
128088-Thumbnail Image.png
Description

The utility of plasma amyloid beta (Aβ) and tau levels for the clinical diagnosis of Alzheimer’s disease (AD) dementia has been controversial. The main objective of this study was to compare Aβ42 and tau levels measured by the ultra-sensitive immunomagnetic reduction (IMR) assays in plasma samples collected at the Banner

The utility of plasma amyloid beta (Aβ) and tau levels for the clinical diagnosis of Alzheimer’s disease (AD) dementia has been controversial. The main objective of this study was to compare Aβ42 and tau levels measured by the ultra-sensitive immunomagnetic reduction (IMR) assays in plasma samples collected at the Banner Sun Health Institute (BSHRI) (United States) with those from the National Taiwan University Hospital (NTUH) (Taiwan). Significant increase in tau levels were detected in AD subjects from both cohorts, while Aβ42 levels were increased only in the NTUH cohort. A regression model incorporating age showed that tau levels identified probable ADs with 81 and 96% accuracy in the BSHRI and NTUH cohorts, respectively, while computed products of Aβ42 and tau increased the accuracy to 84% in the BSHRI cohorts. Using 382.68 (pg/ml)2 as the cut-off value, the product achieved 92% accuracy in identifying AD in the combined cohorts. Overall findings support that plasma Aβ42 and tau assayed by IMR technology can be used to assist in the clinical diagnosis of AD.

ContributorsLue, Lih-Fen (Author) / Sabbagh, Marwan N. (Author) / Chiu, Ming-Jang (Author) / Jing, Naomi (Author) / Snyder, Noelle L. (Author) / Schmitz, Christopher (Author) / Guerra, Andre (Author) / Belden, Christine M. (Author) / Chen, Ta-Fu (Author) / Yang, Che-Chuan (Author) / Yang, Shieh-Yueh (Author) / Walker, Douglas (Author) / Chen, Kewei (Author) / Reiman, Eric M. (Author) / Biodesign Institute (Contributor)
Created2017-07-24
128325-Thumbnail Image.png
Description

Evidence of inflammation has been consistently associated with pathology in Parkinson's disease (PD)-affected brains, and has been suggested as a causative factor. Dopaminergic neurons in the substantia nigra (SN) pars compacta, whose loss results in the clinical symptoms associated with PD, are particularly susceptible to inflammatory damage and oxidative stress.

Evidence of inflammation has been consistently associated with pathology in Parkinson's disease (PD)-affected brains, and has been suggested as a causative factor. Dopaminergic neurons in the substantia nigra (SN) pars compacta, whose loss results in the clinical symptoms associated with PD, are particularly susceptible to inflammatory damage and oxidative stress. Inflammation in the striatum, where SN dopaminergic neurons project, is also a feature of PD brains. It is not known whether inflammatory changes occur first in striatum or SN. Many animal models of PD have implicated certain inflammatory molecules with dopaminergic cell neuronal loss; however, there have been few studies to validate these findings by measuring the levels of these and other inflammatory factors in human PD brain samples.

This study also included samples from incidental Lewy body disease (ILBD) cases, since ILBD is considered a non-symptomatic precursor to PD, with subjects having significant loss of tyrosine hydroxylase-producing neurons. We hypothesized that there may be a progressive change in key inflammatory factors in ILBD samples intermediate between neurologically normal and PD. To address this, we used a quantitative antibody-array platform (Raybiotech-Quantibody arrays) to measure the levels of 160 different inflammation-associated cytokines, chemokines, growth factors, and related molecules in extracts of SN and striatum from clinically and neuropathologically characterized PD, ILBD, and normal control cases. Patterns of changes in inflammation and related molecules were distinctly different between SN and striatum.

Our results showed significantly different levels of interleukin (IL)-5, IL-15, monokine induced by gamma interferon, and IL-6 soluble receptor in SN between disease groups. A different panel of 13 proteins with significant changes in striatum, with IL-15 as the common feature, was identified. Although the ability to detect some proteins was limited by sensitivity, patterns of expression indicated involvement of certain T-cell cytokines, vascular changes, and loss of certain growth factors, with disease progression. The results demonstrate the feasibility of profiling inflammatory molecules using diseased human brain samples, and have provided additional targets to validate in relation to PD pathology.

ContributorsWalker, Douglas (Author) / Lue, Lih-Fen (Author) / Serrano, Geidy (Author) / Adler, Charles H. (Author) / Caviness, John N. (Author) / Sue, Lucia I. (Author) / Beach, Thomas G. (Author) / Biodesign Institute (Contributor)
Created2016-01-14
128147-Thumbnail Image.png
Description

The utility of the levels of amyloid beta (Aβ) peptide and tau in blood for diagnosis, drug development, and assessment of clinical trials for Alzheimer’s disease (AD) has not been established. The lack of availability of ultra-sensitive assays is one critical issue that has impeded progress. The levels of Aβ

The utility of the levels of amyloid beta (Aβ) peptide and tau in blood for diagnosis, drug development, and assessment of clinical trials for Alzheimer’s disease (AD) has not been established. The lack of availability of ultra-sensitive assays is one critical issue that has impeded progress. The levels of Aβ species and tau in plasma and serum are much lower than levels in cerebrospinal fluid. Furthermore, plasma or serum contain high levels of assay-interfering factors, resulting in difficulties in the commonly used singulex or multiplex ELISA platforms. In this review, we focus on two modern immune-complex-based technologies that show promise to advance this field. These innovative technologies are immunomagnetic reduction technology and single molecule array technology. We describe the technologies and discuss the published studies using these technologies. Currently, the potential of utilizing these technologies to advance Aβ and tau as blood-based biomarkers for AD requires further validation using already collected large sets of samples, as well as new cohorts and population-based longitudinal studies.

ContributorsLue, Lih-Fen (Author) / Guerra, Andre (Author) / Walker, Douglas (Author) / Biodesign Institute (Contributor)
Created2017-07-21