Matching Items (1,272)
Filtering by

Clear all filters

152050-Thumbnail Image.png
Description
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group)

In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
ContributorsElledge, Shawn Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Paupert, Julien (Committee member) / Arizona State University (Publisher)
Created2013
153445-Thumbnail Image.png
Description
In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic

In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic $L$-functions associated to elliptic curves with complex multiplication (CM) by realizing these $p$-adic $L$-functions as $Gamma$-transforms of certain $p$-adic rational function measures. The results in the CM case give the vanishing of the Iwasawa $mu$-invariant for certain $mathbb{Z}_p$-extensions of imaginary quadratic fields constructed from torsion points of CM elliptic curves.

In this thesis, I develop the theory of $p$-adic measures on $mathbb{Z}_p^d$, with particular interest given to the case of $d>1$. Although I introduce these measures within the context of $p$-adic integration, this study includes a strong emphasis on the interpretation of $p$-adic measures as $p$-adic power series. With this dual perspective, I describe $p$-adic analytic operations as maps on power series; the most important of these operations is the multivariate $Gamma$-transform on $p$-adic measures.

This thesis gives new significance to product measures, and in particular to the use of product measures to construct measures on $mathbb{Z}_p^2$ from measures on $mathbb{Z}_p$. I introduce a subring of pseudo-polynomial measures on $mathbb{Z}_p^2$ which is closed under the standard operations on measures, including the $Gamma$-transform. I obtain results on the Iwasawa-invariants of such pseudo-polynomial measures, and use these results to deduce certain continuity results for the $Gamma$-transform. As an application, I establish the vanishing of the Iwasawa $mu$-invariant of Yager's two-variable $p$-adic $L$-function from measure theoretic considerations.
ContributorsZinzer, Scott Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2015
157198-Thumbnail Image.png
Description
In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique.

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1).
ContributorsWells, Joseph (Author) / Paupert, Julien (Thesis advisor) / Kotschwar, Brett (Committee member) / Childress, Nancy (Committee member) / Fishel, Susanna (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2019
157261-Thumbnail Image.png
Description
Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth

Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.

The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.

The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves.
ContributorsNguyen, Xuan Tho (Author) / Bremner, Andrew (Thesis advisor) / Childress, Nancy (Committee member) / Jones, John (Committee member) / Quigg, John (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2019
133379-Thumbnail Image.png
Description
The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul

The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul and a natural $q$-analogue of the Super Catalan numbers. We do this by creating a statistic $\sigma$ for which the $q$ Super Catalan numbers, $S_q(m,n)=\sum_X (-1)^{\mu(X)} q^{\sigma(X)}$. In doing so, we take a step towards finding a strict combinatorial interpretation for the Super Catalan numbers.
ContributorsHouse, John Douglas (Author) / Fishel, Susanna (Thesis director) / Childress, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
As computers become a more embedded aspect of daily life, the importance of communicating ideas in computing and technology to the general public has become increasingly apparent. One such growing technology is electronic voting. The feasibility of explaining electronic voting protocols was directly investigated through the generation of a presentation

As computers become a more embedded aspect of daily life, the importance of communicating ideas in computing and technology to the general public has become increasingly apparent. One such growing technology is electronic voting. The feasibility of explaining electronic voting protocols was directly investigated through the generation of a presentation based on journal articles and papers identified by the investigator. Extensive use of analogy and visual aids were used to explain various cryptographic concepts. The presentation was then given to a classroom of ASU freshmen, followed by a feedback survey. A self-evaluation on the presentation methods is conducted, and a procedure for explaining subjects in computer science is proposed based on the researcher's personal process.
ContributorsReniewicki, Peter Josef (Author) / Bazzi, Rida (Thesis director) / Childress, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155093-Thumbnail Image.png
Description
The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory.

The Tamari lattice T(n) was originally defined on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Since then it has been studied in various areas of mathematics including cluster algebras, discrete geometry, algebraic combinatorics, and Catalan theory. Although in several related lattices the number of maximal chains is known, the enumeration of these chains in Tamari lattices is still an open problem.

This dissertation defines a partially-ordered set on equivalence classes of certain saturated chains of T(n) called the Tamari Block poset, TB(lambda). It further proves TB(lambda) is a graded lattice. It then shows for lambda = (n-1,...,2,1) TB(lambda) is anti-isomorphic to the Higher Stasheff-Tamari orders in dimension 3 on n+2 elements. It also investigates enumeration questions involving TB(lambda), and proves other structural results along the way.
ContributorsTreat, Kevin (Author) / Fishel, Susanna (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Jones, John (Committee member) / Childress, Nancy (Committee member) / Colbourn, Charles (Committee member) / Arizona State University (Publisher)
Created2016
155340-Thumbnail Image.png
Description
The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied with the right weak ordering induced by the c-sortable elements

under

The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c),

is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian

lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the

braid group accompanied with the right weak ordering induced by the c-sortable elements

under certain conditions. Both of these families generalize the well-studied

Tamari lattice Tn rst introduced by D. Tamari in 1962. S. Fishel and L. Nelson

enumerated the chains of maximum length of Tamari lattices.

In this dissertation, I study the chains of maximum length of the Cambrian and

m-eralized Cambrian lattices, precisely, I enumerate these chains in terms of other

objects, and then nd formulas for the number of these chains for all m-eralized

Cambrian lattices of A1, A2, A3, and A4. Furthermore, I give an alternative proof

for the number of chains of maximum length of the Tamari lattice Tn, and provide

conjectures and corollaries for the number of these chains for all m-eralized Cambrian

lattices of A5.
ContributorsAl-Suleiman, Sultan (Author) / Fishel, Susanna (Thesis advisor) / Childress, Nancy (Committee member) / Czygrinow, Andrzej (Committee member) / Jones, John (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2017