Matching Items (17)

132784-Thumbnail Image.png

Documenting enhanced nitrogen removal in an aridland Constructed Treatment Wetland

Description

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources are scarce; however, research regarding aridland CTWs is limited. The Tres Rios CTW in Phoenix, Arizona, USA, presents the tradeoff between greater water loss and enhanced nitrogen (N) removal. Previous research has suggested that water loss due to transpiration is replaced by a phenomenon termed the Biological Tide. This trend has been documented since 2011 by combining transpiration values with a nitrogen budget. Calculations were made at both the marsh and whole-system scale. The purpose of this paper is to demonstrate how the Biological Tide enhances N uptake throughout the CTW. Results indicate that about half of the nitrogen taken up by the vegetated marsh is associated with new water entering the marsh via the Biological Tide with even higher values during warmer months. Furthermore, it is this phenomenon that enhances N uptake throughout the year, on average, by 25.9% for nitrite, 9.54% for nitrate, and 4.84% for ammonium at the whole-system scale and 95.5%, 147%, and 118% within the marsh. This paper demonstrates the Biological Tide’s significant impact on enhanced N removal in an aridland CTW.

Contributors

Created

Date Created
  • 2019-05

152591-Thumbnail Image.png

Soil moisture availability and energetic controls on belowground network complexity and function in arid ecosystems

Description

The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However,

The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability) and soil structure in mesic- and agro- ecosystems. Despite the empirical and theoretical strides made in soil ecology over the last few decades, questions regarding ecosystem function and soil processes remain, especially for arid areas. Arid areas have unique ecosystem biogeochemistry, decomposition processes, and soil microbial responses to moisture inputs that deviate from predictions derived using data generated in more mesic systems. For example, current paradigm predicts that soil microbes will respond positively to increasing moisture inputs in a water-limited environment, yet data collected in arid regions are not congruent with this hypothesis. The influence of abiotic factors on litter decomposition rates (e.g., photodegradation), litter quality and availability, soil moisture pulse size, and resulting feedbacks on detrital food web structure must be explicitly considered for advancing our understanding of arid land ecology. However, empirical data coupling arid belowground food webs and ecosystem processes are lacking. My dissertation explores the resource controls (soil organic matter and soil moisture) on food web network structure, size, and presence/absence of expected belowground trophic groups across a variety of sites in Arizona.

Contributors

Agent

Created

Date Created
  • 2014

154066-Thumbnail Image.png

Flowing together: addressing social-ecological scale mismatches for estuary watershed restoration in the Whidbey Basin, Puget Sound, WA

Description

Landscape restoration is a global priority as evidenced by the United Nations’ 2020 goal to restore 150 million hectares of land worldwide. Restoration is particularly needed in estuaries and their

Landscape restoration is a global priority as evidenced by the United Nations’ 2020 goal to restore 150 million hectares of land worldwide. Restoration is particularly needed in estuaries and their watersheds as society depends on these environments for numerous benefits. Estuary restoration is often undermined by social-ecological scale mismatch, the incongruence between governing units and the bio-physical resources they seek to govern. Despite growing recognition of this fact, few empirical studies focus on scale mismatches in environmental restoration work. Using a sub-basin of Puget Sound, Washington, U.S.A., I analyze scale mismatches in estuary restoration. I take a network science approach because governance networks can bridge scale mismatches. I combine quantitative social network analysis (SNA), geographic information systems (GIS), and qualitative interview analysis.

Spatial network analysis reveals several areas with weak scale mismatch bridging networks. These weak social networks are then compared to ecological restoration needs to identify coupled social-ecological restoration concerns. Subsequent study investigates jurisdictional and sectoral network integration because governance siloes contribute to scale mismatch. While the network is fairly well integrated, several sectors do not interact or interact very little. An analysis of collaboration reasons disentangles the idea of generic collaboration. Among three relationship types considered, mandated relationships contribute almost 5.5 times less to perceived collaboration productivity than shared interest relationships, highlighting the benefits of true collaborations in watershed governance. Lastly, the effects of scale mismatch on individual restoration projects and landscape level restoration planning are assessed through qualitative interview analysis. Results illustrate why human-environment processes should be included in landscape restoration planning. Social factors are not considered as constraints to restoration but rather part of the very landscape fabric to be restored. Scale mismatch is conceptualized as a complex social-ecological landscape pattern that affects the flow of financial, human, and natural capital across the landscape. This represents a new way of thinking about scale mismatch and landscape restoration in complex multi-level governance systems. In addition, the maps, network diagnostics, and narratives in this dissertation can help practitioners in Puget Sound and provide proofs of concepts that can be replicated elsewhere for restoration and broader conservation sciences.

Contributors

Agent

Created

Date Created
  • 2015

154161-Thumbnail Image.png

Ecology and the city: a long-term social-ecological examination of the drivers and diversity of urban vegetation

Description

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however,

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from changing climate norms. The overarching question of my dissertation research was: How does urban vegetation change in response to human behavior? To answer this question, I conducted multiscale research in an arid urban ecosystem as well as in a virtual desert city. I used a combination of long-term data and agent-based modeling to examine changes in vegetation across a range of measures influenced by biophysical, climate, institutional, and socioeconomic drivers. At the regional scale, total plant species diversity increased from 2000 to 2010, while species composition became increasingly homogeneous in urban and agricultural areas. At the residential scale, I investigated the effects of biophysical and socioeconomic drivers – the Great Recession of 2007-2010 in particular – on changing residential yard vegetation in Phoenix, AZ. Socioeconomic drivers affected plant composition and increasing richness, but the housing boom from 2000 through 2005 had a stronger influence on vegetation change than the subsequent recession. Surprisingly, annual plant species remained coupled to winter precipitation despite my expectation that their dynamics might be driven by socioeconomic fluctuations. In a modeling experiment, I examined the relative strength of psychological, social, and governance influences on large-scale urban land cover in a desert city. Model results suggested that social norms may be strong enough to lead to large-scale conversion to low water use residential landscaping, and governance may be unnecessary to catalyze residential landscape conversion under the pressure of extreme drought conditions. Overall, my dissertation research showed that urban vegetation is dynamic, even under the presumably stabilizing influence of human management activities. Increasing climate pressure, unexpected socioeconomic disturbances, growing urban populations, and shifting policies all contribute to urban vegetation dynamics. Incorporating these findings into planning policies will contribute to the sustainable management of urban ecosystems.

Contributors

Agent

Created

Date Created
  • 2015

154923-Thumbnail Image.png

The phyllosphere of Phoenix's urban forest: insights from a publicly-funded microbial environment

Description

The aboveground surfaces of plants (i.e. the phyllosphere) comprise the largest biological interface on Earth (over 108 km2). The phyllosphere is a diverse microbial environment where bacterial inhabitants have been

The aboveground surfaces of plants (i.e. the phyllosphere) comprise the largest biological interface on Earth (over 108 km2). The phyllosphere is a diverse microbial environment where bacterial inhabitants have been shown to sequester and degrade airborne pollutants (i.e. phylloremediation). However, phyllosphere dynamics are not well understood in urban environments, and this environment has never been studied in the City of Phoenix, which maintains roughly 92,000 city trees. The phyllosphere will grow if the City of Phoenix is able to achieve its goal of 25% canopy coverage by 2030, but this begs the question: How and where should the urban canopy expand? I addressed this question from a phyllosphere perspective by sampling city trees of two species, Ulmus parvifolia (Chinese Elm) and Dalbergia sissoo (Indian Rosewood) in parks and on roadsides. I identified characteristics of the bacterial community structure and interpreted the ecosystem service potential of trees in these two settings. I used culture-independent methods to compare the abundance of each unique bacterial lineage (i.e. ontological taxonomic units or OTUs) on the leaves of park trees versus on roadside tree leaves. I found numerous bacteria (81 OTUs) that were significantly more abundant on park trees than on roadside trees. Many of these OTUs are ubiquitous to bacterial phyllosphere communities, are known to promote the health of the host tree, or have been shown to degrade airborne pollutants. Roadside trees had fewer bacteria (10 OTUs) that were significantly more abundant when compared to park trees, but several have been linked to the remediation of petroleum combustion by-products. These findings, that were not available prior to this study, may inform the City of Phoenix as it is designing its future urban forests.

Contributors

Agent

Created

Date Created
  • 2016

157750-Thumbnail Image.png

Practicing democracy: improving participatory technology assessment for sustainability challenges

Description

Participatory approaches to policy-making and research are thought to “open up” technical decision-making to broader considerations, empower diverse public audiences, and inform policies that address pluralistic public goods. Many studies

Participatory approaches to policy-making and research are thought to “open up” technical decision-making to broader considerations, empower diverse public audiences, and inform policies that address pluralistic public goods. Many studies of participatory efforts focus on specific features or outcomes of those efforts, such as the format of a participatory event or the opinions of participants. While valuable, such research has not resolved conceptual problems and critiques of participatory efforts regarding, for example, their reinforcement of expert perspectives or their inability to impact policy- and decision-making. I studied two participatory efforts using survey data collected from participants, interviews with policy makers and experts associated with each project, and an analysis of project notes, meeting minutes, and my own personal reflections about each project. Both projects were based one type of participatory effort called Participatory Technology Assessment (pTA). I examined how project goals, materials, and the values, past experiences, and judgments of practitioners influenced decisions that shaped two participatory efforts to better understand how practitioners approached the challenges associated with participatory efforts.

I found four major themes that influenced decisions about these projects: Promoting learning; building capacity to host pTA events; fostering good deliberation; and policy relevance. Project organizers engaged in iterative discussions to negotiate how learning goals related to dominant ideas from policy and expert communities and frequently reflected on the impact of participatory efforts on participants and on broader socio-political systems. Practitioners chose to emphasize criteria for deliberation that were flexible and encompassing. They relied heavily on internal discussions about materials and format, and on feedback collected from participants, policy makers, and other stakeholders, to shape both projects, though some decisions resulted in unexpected and undesirable outcomes for participant discussions and policy relevance. Past experience played a heavy role in many decisions about participatory format and concerns about deliberative or participatory theory were only nominally present. My emphasis on understanding the practice of participatory efforts offers a way to reframe research on participatory efforts away from studying ‘moments’ of participation to studying the larger role participatory efforts play in socio-political systems.

Contributors

Agent

Created

Date Created
  • 2019

157791-Thumbnail Image.png

Shifting the sustainability paradigm: co-creating thriving living systems through regenerative development

Description

Sustainability research and action in communities should be holistic, integrating sociocultural, biogeophysical, and spiritual components and their temporal and spatial dynamics toward the aim of co-creating thriving living systems. Yet

Sustainability research and action in communities should be holistic, integrating sociocultural, biogeophysical, and spiritual components and their temporal and spatial dynamics toward the aim of co-creating thriving living systems. Yet scientists and practitioners still struggle with such integration. Regenerative development (RD) offers a way forward. RD focuses on shifting the consciousness and thinking underlying (un)sustainability as well as their manifestation in the physical world, creating increasingly higher levels of health and vitality for all life across scales. However, tools are nascent and relatively insular. Until recently, no empirical scientific research studies had been published on RD processes and outcomes.

My dissertation fills this gap in three complementary studies. The first is an integrative review that contextualizes regenerative development within the fields of sustainability, sustainable design and development, and ecology by identifying its conceptual elements and introducing a regenerative landscape development paradigm. The second study integrates complex adaptive systems science, ecology, sustainability, and regenerative development to construct and pilot the first iteration of a holistic sustainable development evaluation tool—the Regenerative Development Evaluation Tool—in two river restoration projects. The third study builds upon the first two, integrating scientific knowledge with existing RD and sustainable community design and development practices and theory to construct and pilot a Regenerative Community Development (RCD) Framework. Results indicate that the RCD Framework and Tools, when used within a regenerative landscape development paradigm, can facilitate: (1) shifts in thinking and development and design outcomes to holistic and regenerative ones; (2) identification of areas where development and design projects can become more regenerative and ways to do so; and (3) identification of factors that potentially facilitate and impede RCD processes. Overall, this research provides a direction and tools for holistic sustainable development as well as foundational studies for further research.

Contributors

Agent

Created

Date Created
  • 2019

155657-Thumbnail Image.png

Methane and nitrous oxide fluxes from water, plants, and soils of a constructed treatment wetland in Phoenix, AZ

Description

Constructed treatment wetlands (CTW) have been a cost-efficient technological solution to treat different types of wastewater but may also be sources of emitters of methane (CH4) and nitrous oxide (N2O).

Constructed treatment wetlands (CTW) have been a cost-efficient technological solution to treat different types of wastewater but may also be sources of emitters of methane (CH4) and nitrous oxide (N2O). Thus, my objective for this dissertation was to investigate CH4 and N2O fluxes via multiple pathways from the Tres Rios CTW located in Phoenix, AZ, USA. I measured gas fluxes from the CTW along a whole-system gradient (from inflow to outflow) and a within-marsh gradient (shoreline, middle, and open water sites). I found higher diffusive CH4 release in the summer compared to spring and winter seasons. Along the whole-system gradient, I found greater CH4 and N2O emission fluxes near the inflow compared to near the outflow. Within the vegetated marsh, I found greater CH4 emission fluxes at the vegetated marsh subsites compared to the open water. In contrast, N2O emissions were greater at the marsh-open water locations compared to interior marsh. To study the plant-mediated pathway, I constructed small gas chambers fitted to Typha spp. leaves. I found plant-mediated CH4 fluxes were greater near the outflow than near the inflow and that CH4 fluxes were higher from lower sections of plants compared to higher sections. Overall, Typha spp. emitted a mean annual daily flux rate of 358.23 mg CH4 m-2 d-1. Third, using a 30-day mesocosm experiment I studied the effects of three different drydown treatments (2, 7, 14 days) on the fluxes of CH4 and N2O from flooded CTW soils. I found that CH4 fluxes were not significantly affected by soil drydown events. Soils that were dry for 7 days shifted from being N2O sources to sinks upon inundation. As a result, the 7-day drydown soils were sinks while the 14-day drydown soils showed significant N2O release. My results emphasize the importance of studying ecological processes in CTWs to improve their design and management strategies so we can better mitigate their greenhouse gas emissions.

Contributors

Agent

Created

Date Created
  • 2017

155015-Thumbnail Image.png

Desert playa wetlands: ecological controls of their functioning and responses to climate change

Description

The Basin and Range province of southwestern USA are composed of different grassland and shrubland ecosystems. Particularly understudied ecosystems in this region are playas, which are ephemerally-flooded wetlands located in

The Basin and Range province of southwestern USA are composed of different grassland and shrubland ecosystems. Particularly understudied ecosystems in this region are playas, which are ephemerally-flooded wetlands located in topographic low areas of hydrologically-closed dryland catchments. There is not much known about the ecological functioning of playas and the role of playas within desert basins. Even less is known about how global change drivers may affect playas in the future. The main objective of this thesis was to better understand the ecological functioning and the impact of climate change on desert playa wetlands. I collected new data, used existing long-term data, and used simulation modelling techniques to address this objective. I compared playa soils to upland soils and found that playas were hotspots of soil organic carbon and nutrient storage within a desert basin. I also used existing data to analyze the response of above-ground net primary productivity (ANPP) to annual precipitation in playas and upland ecosystems. I found that playa ANPP responded in a non-linear concave-down relationship with annual precipitation amount. Playa ANPP peaked in moderately wet years and declined in very wet years, which was most likely due to flooding; whereas, upland ANPP increased linearly with precipitation. I measured soil organic carbon and nitrogen concentrations in a representative subset of playas and measured the biophysical characteristics of the upland catchments associated with each playa. I found that both catchment geomorphology and vegetation cover were correlated to differences in soil organic carbon and nitrogen among playas. These results showed the importance external soil-inputs delivered via surface runon to playas. Finally, I empirically measured groundwater recharge beneath playas and combined these empirical data with modelling data to forecast how playa groundwater recharge may change in the future. I concluded that playas contribute to groundwater recharge in desert aquifers, playa runon is a strong predictor of playa groundwater recharge, and climate change will have a net-positive impact on groundwater recharge beneath playas. Overall, my thesis research increased the understanding of the role of desert playas on the functioning of dryland ecosystems.

Contributors

Agent

Created

Date Created
  • 2016

157262-Thumbnail Image.png

Designing and implementing ecological monitoring of aridland urban ecological infrastructure (UEI): a case-study of design process and outcomes

Description

Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues

Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues through ecosystem services (e.g. stormwater retention or treatment). The growing use of UEI to address urban sustainability challenges can bring together teams of urban researchers and practitioners to co-produce UEI design, monitoring and maintenance. However, this co-production process received little attention in the literature, and has not been studied in the Phoenix Metro Area.

I examined several components of a co-produced design process and related project outcomes associated with a small-scale UEI project – bioswales installed at the Arizona State University (ASU) Orange Mall and Student Pavilion in Tempe, AZ. Specifically, I explored the social design process and ecohydrological and biogeochemical outcomes associated with development of an ecohydrological monitoring protocol for assessing post-construction landscape performance of this site. The monitoring protocol design process was documented using participant observation of collaborative project meetings, and semi-structured interviews with key researchers and practitioners. Throughout this process, I worked together with researchers and practitioners to co-produced a suite of ecohydrological metrics to monitor the performance of the bioswales (UEI) constructed at Orange Mall, with an emphasis on understanding stormwater dynamics. I then installed and operated monitoring equipment from Summer 2018 to Spring 2019 to generate data that can be used to assess system performance with respect to the co-identified performance metrics.

The co-production experience resulted in observable change in attitudes both at the individual and institutional level with regards to the integration and use of urban ecological research to assess and improve UEI design. My ecological monitoring demonstrated that system performance met design goals with regards to stormwater capture, and water quality data suggest the system’s current design has some capacity for stormwater treatment. These data and results are being used by practitioners at ASU and their related design partners to inform future design and management of UEI across the ASU campus. More broadly, this research will provide insights into improving the monitoring, evaluation, and performance efficacy associated with collaborative stormwater UEI projects, independent of scale, in arid cities.

Contributors

Agent

Created

Date Created
  • 2019