Matching Items (29)
150044-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Mcbeath, Micheal (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
150444-Thumbnail Image.png
Description
The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on

The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on chromatic cues. The current study was designed to use grey, green, and red stimuli to successively limit the amount of information available to the dorsal stream pathway, while providing roughly equal information to the ventral system. Twenty-one participants identified shapes that were presented in grey, green, and red and were defined by dynamic occlusion. The shapes were then presented again in a static condition where the maximum occlusions were presented as before, but without motion. Results showed an interaction between the motion and static conditions in that when the speed of presentation increased, performance in the motion conditions became significantly less accurate than in the static conditions. The grey and green motion conditions crossed static performance at the same point, whereas the red motion condition crossed at a much slower speed. These data are consistent with a model of neural processing in which the main visual systems share information. Moreover, they support the notion that presenting stimuli in specific colors may help isolate perceptual pathways for scientific investigation. Given the potential for chromatic cues to target specific visual systems in the performance of dynamic object recognition, exploring these perceptual parameters may help our understanding of human visual processing.
ContributorsHolloway, Steven R. (Author) / McBeath, Michael K. (Thesis advisor) / Homa, Donald (Committee member) / Macknik, Stephen L. (Committee member) / Arizona State University (Publisher)
Created2011
156857-Thumbnail Image.png
Description
Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our

Previous research from Rajsic et al. (2015, 2017) suggests that a visual form of confirmation bias arises during visual search for simple stimuli, under certain conditions, wherein people are biased to seek stimuli matching an initial cue color even when this strategy is not optimal. Furthermore, recent research from our lab suggests that varying the prevalence of cue-colored targets does not attenuate the visual confirmation bias, although people still fail to detect rare targets regardless of whether they match the initial cue (Walenchok et al. under review). The present investigation examines the boundary conditions of the visual confirmation bias under conditions of equal, low, and high cued-target frequency. Across experiments, I found that: (1) People are strongly susceptible to the low-prevalence effect, often failing to detect rare targets regardless of whether they match the cue (Wolfe et al., 2005). (2) However, they are still biased to seek cue-colored stimuli, even when such targets are rare. (3) Regardless of target prevalence, people employ strategies when search is made sufficiently burdensome with distributed items and large search sets. These results further support previous findings that the low-prevalence effect arises from a failure to perceive rare items (Hout et al., 2015), while visual confirmation bias is a bias of attentional guidance (Rajsic et al., 2015, 2017).
ContributorsWalenchok, Stephen Charles (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Hout, Michael C (Committee member) / McClure, Samuel M. (Committee member) / Arizona State University (Publisher)
Created2018
157183-Thumbnail Image.png
Description
In the daily life of an individual problems of varying difficulty are encountered.

Each problem may include a different number of constraints placed upon the problem

solver. One type of problem commonly used in research are multiply-constrained

problems, such as the compound remote associates. Since their development they have

been related to creativity and

In the daily life of an individual problems of varying difficulty are encountered.

Each problem may include a different number of constraints placed upon the problem

solver. One type of problem commonly used in research are multiply-constrained

problems, such as the compound remote associates. Since their development they have

been related to creativity and insight. Moreover, research has been conducted to

determine the cognitive abilities underlying problem solving abilities. We sought to fully

evaluate the range of cognitive abilities (i.e., working memory, episodic and semantic

memory, and fluid and crystallized intelligence) linked to multiply-constrained problem

solving. Additionally, we sought to determine whether problem solving ability and

strategies (analytical or insightful) were task specific or domain general through the use

of novel problem solving tasks (TriBond and Location Bond). Results indicated that

multiply-constrained problem solving abilities were domain general, solutions derived

through insightful strategies were more often correct than analytical, and crystallized

intelligence was the only cognitive ability that provided unique predictive value.
ContributorsEllis, Derek M (Author) / Brewer, Gene A. (Thesis advisor) / Homa, Donald (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
137029-Thumbnail Image.png
Description
Collaborative learning is a potential technique for teachers to use to meet the diverse learning needs of the students in their classrooms. Previous studies have investigated the contexts in which the benefits of collaborative learning show greater presence. The most important factor found was the quality of the interactions. Studies

Collaborative learning is a potential technique for teachers to use to meet the diverse learning needs of the students in their classrooms. Previous studies have investigated the contexts in which the benefits of collaborative learning show greater presence. The most important factor found was the quality of the interactions. Studies have suggested that high achieving students are capable of improving the quality of interactions. This bears the question if prior knowledge plays an influence in the learning outcome of students in collaborative learning. Results show that high prior knowledge students do not face a detriment in having low prior knowledge students as a partner comparing to having another high prior knowledge student and that low prior knowledge students show significantly higher learning outcome when partnered with a high prior knowledge partner than with another low prior knowledge student. It is therefore likely that having a high prior knowledge student within a dyad improves the quality of interaction, resulting in greater learning outcome through collaborative learning.
ContributorsKeyvani, Kewmars (Author) / Chi, Michelene (Thesis director) / Wylie, Ruth (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134052-Thumbnail Image.png
Description
It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of

It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of experiments, Carvalho & Goldstone (2013), demonstrated that a blocked presentation showed an advantage during learning, but that ultimately, the distributed presentation yielded better performance during a post-learning transfer test. However, we have identified a major methodological issue in this study that we believe contaminates the results in a way that leads to an inflation and misrepresentation of learning levels. The present study aimed to correct this issue and re-examine whether a blocked or distributed presentation enhances the learning and subsequent generalization of categories. We also introduced two shaping variables, category size and distortion level at transfer, in addition to the mode of presentation (blocked versus distributed). Results showed no significant differences of mode of presentation at either the learning or transfer phases, thus supporting our concern about the previous study. Additional findings showed benefits in learning categories with a greater category size, as well as higher classification accuracy of novel stimuli at lower-distortion levels.
ContributorsJacoby, Victoria Leigh (Author) / Homa, Donald (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
153874-Thumbnail Image.png
Description
Emergent processes can roughly be defined as processes that self-arise from interactions without a centralized control. People have many robust misconceptions in explaining emergent process concepts such as natural selection and diffusion. This is because they lack a proper categorical representation of emergent processes and often misclassify these processes into

Emergent processes can roughly be defined as processes that self-arise from interactions without a centralized control. People have many robust misconceptions in explaining emergent process concepts such as natural selection and diffusion. This is because they lack a proper categorical representation of emergent processes and often misclassify these processes into the sequential processes category that they are more familiar with. The two kinds of processes can be distinguished by their second-order features that describe how one interaction relates to another interaction. This study investigated if teaching emergent second-order features can help people more correctly categorize new processes, it also compared different instructional methods in teaching emergent second-order features. The prediction was that learning emergent features should help more than learning sequential features because what most people lack is the representation of emergent processes. Results confirmed this by showing participants who generated emergent features and got correct features as feedback were better at distinguishing two kinds of processes compared to participants who rewrote second-order sequential features. Another finding was that participants who generated emergent features followed by reading correct features as feedback did better in distinguishing the processes than participants who only attempted to generate the emergent features without feedback. Finally, switching the order of instruction by teaching emergent features and then asking participants to explain the difference between emergent and sequential features resulted in equivalent learning gain as the experimental group that received feedback. These results proved teaching emergent second-order features helps people categorize processes and demonstrated the most efficient way to teach them.
ContributorsXu, Dongchen (Author) / Chi, Michelene (Thesis advisor) / Homa, Donald (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2015
155745-Thumbnail Image.png
Description
In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the

In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the memory accessibility in participants during the alternative uses tasks were conducted. Experiment 1 directly instructed participants to either generate usages based on memory or not from memory; Experiment 2 provided participants with object cues that were either very common or very rare in daily life (i.e., bottle vs. canteen); Experiment 3 replicated the same manipulation from Experiment 2 with much longer generation time (10 minutes in Experiment 2 vs. 30 minutes in Experiment 3). The oppositional processes theory predicted that participants who had less access to direct and unaltered usages (i.e., told to not use memory, were given rare cues, or were outputting items later in the generation period) during the task would be more creative. Results generally supported the predictions in Experiments 1 and 2 where participants from conditions which limited their access to memory generated more novel usages that were considered more creative by independent coders. Such effects were less prominent in Experiment 3 with extended generation time but the trends remained the same.
ContributorsXu, Dongchen (Author) / Brewer, Gene (Thesis advisor) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
155315-Thumbnail Image.png
Description
In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in

In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in air only travels about 1100 feet per second, fans observing from several hundred feet away will receive auditory cues that are delayed a significant portion of a second, and thus conceivably could systematically differ in judgments compared to the nearby umpire. The current research examines two questions. 1. How reliably and with what biases do observers judge the order of visual versus auditory events? 2. Do observers making such order judgments from far away systematically compensate for delays due to the slow speed of sound? It is hypothesized that if any temporal bias occurs it is in the direction consistent with observers not accounting for the sound delay, such that increasing viewing distance will increase the bias to assume the sound occurred later. It was found that nearby observers are relatively accurate at judging if a sound occurred before or after a simple visual event (a flash), but exhibit a systematic bias to favor visual stimuli occurring first (by about 30 msec). In contrast, distant observers did not compensate for the delay of the speed of sound such that they systematically favored the visual cue occurring earlier as a function of viewing distance. When observers judged simple visual stimuli in motion relative to the same sound burst, the distance effect occurred as a function of the visual clarity of the ball arriving. In the baseball setting, using a large screen projection of baserunner, a diminished distance effect occurred due to the additional visual cues. In summary, observers generally do not account for the delay of sound due to distance.
ContributorsKrynen, R. Chandler (Author) / McBeath, Michael (Thesis advisor) / Homa, Donald (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
149644-Thumbnail Image.png
Description
Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.
ContributorsCovas-Smith, Christine Marie (Author) / Cooke, Nancy J. (Thesis advisor) / Patterson, Robert (Committee member) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011