Matching Items (43)
Filtering by

Clear all filters

Description

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts.

Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

149120-Thumbnail Image.png
ContributorsSchmidt, John C. (Contributor)
Created2014-10-31
149121-Thumbnail Image.png
ContributorsSchmidt, John C. (Contributor)
Created2014-08-28
149135-Thumbnail Image.png
Description

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior to disturbance" and that "restoring altered, damaged, O f destroyed lakes, rivers, and wetlands is a high-priority task." Effective restoration must be based on a clear definition of the value of riverine resources to society; on scientific studies that document ecosystem status and provide an understanding of ecosystem processes and resource interactions; on scientific studies that predict, mea- sure, and monitor the effectiveness of restoration techniques; and on engineering and economic studies that evaluate societal costs and benefits of restoration.

In the case of some large rivers, restoration is not a self-evident goal. Indeed, restoration may be impossible; a more feasible goal may be rehabilitation of some ecosystem components and processes in parts of the river (Gore and Shields 1995, Kondolfand Wilcock 1996, Stanford et al. 1996). In other cases, the appropriate decision may be to do nothing. The decision to manipulate ecosystem processes and components involves not only a scientific judgment that a restored or rehabilitated condition is achievable, but also a value judgment that this condition is more desirable than the status quo. These judgments involve prioritizing different river resources, and they should be based on extensive and continuing public debate.

In this article, we examine the appropriate role of science in determining whether or not to restore or rehabilitate the Colorado River in the Grand Canyon by summarizing studies carried out by numerous agencies, universities, and consulting firms since 1983. This reach of the Colorado extends 425 km between Glen Canyon Dam and Lake Mead reservoir (Figure 1). Efforts to manipulate ecosystem processes and components in the Grand Canyon have received widespread public attention, such as the 1996 controlled flood released from Glen Canyon Dam and the proposal to drain Lake Powell reservoir.

ContributorsSchmidt, John C. (Author) / Webb, Robert H. (Author) / Valdez, Richard A. (Author) / Marzolf, G. Richard (Author) / Stevens, Lawrence E. (Author)
Created1998-09
Description

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a consistent management culture, and modes reflecting large infrastructure investments to provide an opportunity for robust life cycle assessment of large impact components. An in-depth screening process including consideration of data availability, project age, energy consumption, infrastructure information, access and egress information, and socio-demographic characteristics was used as the second filter. The results of this selection process led to Los Angeles Metro’s Orange and Gold lines.

In this study, the life cycle assessment framework is used to evaluate energy inputs and emissions of greenhouse gases, particulate matter (10 and 2.5 microns), sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. For the Orange line, Gold line, and competing automobile trip, an analysis system boundary that includes vehicle, infrastructure, and energy production components is specified. Life cycle energy use and emissions inventories are developed for each mode considering direct (vehicle operation), ancillary (non-vehicle operation including vehicle maintenance, infrastructure construction, infrastructure operation, etc.), and supply chain processes and services. In addition to greenhouse gas emissions, the inventories are linked to their potential for respiratory impacts and smog formation, and the time it takes to payback in the lifetime of each transit system.

Results show that for energy use and greenhouse gas emissions, the inclusion of life cycle components increases the footprint between 42% and 91% from vehicle propulsion exclusively. Conventional air emissions show much more dramatic increases highlighting the effectiveness of “tailpipe” environmental policy. Within the life cycle, vehicle operation is often small compared to other components. Particulate matter emissions increase between 270% and 5400%. Sulfur dioxide emissions increase by several orders of magnitude for the on road modes due to electricity use throughout the life cycle. NOx emissions increase between 31% and 760% due to supply chain truck and rail transport. VOC emissions increase due to infrastructure material production and placement by 420% and 1500%. CO emissions increase by between 20% and 320%. The dominating contributions from life cycle components show that the decision to build an infrastructure and operate a transportation mode in Los Angeles has impacts far outside of the city and region. Life cycle results are initially compared at each system’s average occupancy and a breakeven analysis is performed to compare the range at which modes are energy and environmentally competitive.

The results show that including a broad suite of energy and environmental indicators produces potential tradeoffs that are critical to decision makers. While the Orange and Gold line require less energy and produce fewer greenhouse gas emissions per passenger mile traveled than the automobile, this ordering is not necessarily the case for the conventional air emissions. It is possible that a policy that focuses on one pollutant may increase another, highlighting the need for a broad set of indicators and life cycle thinking when making transportation infrastructure decisions.

Description

The goal of this working paper is to provide the methodological background for several upcoming reports and peer-reviewed journal publications. This manuscript only provides background methodology and does not show or interpret any of the results that are being generated by the research team. The methodology is consistent with the

The goal of this working paper is to provide the methodological background for several upcoming reports and peer-reviewed journal publications. This manuscript only provides background methodology and does not show or interpret any of the results that are being generated by the research team. The methodology is consistent with the transportation LCA approach developed by the author in previous research. The discussion in this working paper provides the detailed background data and steps used by the research team for their assessment of Los Angeles Metro transit lines and a competing automobile trip.

Created2012-07-30