Matching Items (16)

152207-Thumbnail Image.png

Photovoltaic capacity additions: the optimal rate of deployment with sensitivity to time-based GHG emissions

Description

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.

Contributors

Agent

Created

Date Created
2013

134798-Thumbnail Image.png

Effect of Climate Change on Arizona Roadway Drainage Infrastructure

Description

There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work

There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions about the vulnerability of this system due to changes in precipitation. This work also addresses the mechanisms of failure of these drainage systems and how they may be affected by changes in precipitation due to climate change. These changes may entail more frequent failure by certain mechanisms, or a shift in the mechanisms for particular infrastructure. A sample water basin in the urban environment of Phoenix, Arizona is given as a case study. This study looks at the mechanisms of failure of the infrastructure therein, as well as provides a process of analyzing the effects of increases in precipitation to the vulnerability of this infrastructure. It was found that drainage structures at roadways being currently designed will see increases from 20-30% in peak discharge, which will lead to increased frequency of failure.

Contributors

Created

Date Created
2016-12

152852-Thumbnail Image.png

Transit-oriented smart growth can reduce life-cycle environmental impacts and household costs in Los Angeles

Description

The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require

The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require the coupling of behavioral forecasting with environmental assessment. Using new light rail and bus rapid transit in Los Angeles, California as a case study, a life-cycle environmental and economic assessment is developed to assess the potential range of impacts resulting from mixed-use infill development. An integrated transportation and land use life-cycle assessment framework is developed to estimate energy consumption, air emissions, and economic (public, developer, and user) costs. Residential and commercial buildings, automobile travel, and transit operation changes are included and a 60-year forecast is developed that compares transit-oriented growth against growth in areas without close access to high-capacity transit service. The results show that commercial developments create the greatest potential for impact reductions followed by residential commute shifts to transit, both of which may be effected by access to high-capacity transit, reduced parking requirements, and developer incentives. Greenhouse gas emission reductions up to 470 Gg CO2-equivalents per year can be achieved with potential costs savings for TOD users. The potential for respiratory impacts (PM10-equivalents) and smog formation can be reduced by 28-35%. The shift from business-as-usual growth to transit-oriented development can decrease user costs by $3,100 per household per year over the building lifetime, despite higher rental costs within the mixed-use development.

Contributors

Agent

Created

Date Created
2014

153424-Thumbnail Image.png

Stochastic Multi Attribute Analysis for comparative life cycle assessment

Description

Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may

Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact categories make it difficult to identify environmentally preferable alternatives. To help reconcile this dilemma, LCA analysts have the option to apply normalization and weighting to generate comparisons based upon a single score. However, these approaches can be misleading because they suffer from problems of reference dataset incompletion, linear and fully compensatory aggregation, masking of salient tradeoffs, weight insensitivity and difficulties incorporating uncertainty in performance assessment and weights. Consequently, most LCA studies truncate impacts assessment at characterization, which leaves decision-makers to confront highly uncertain multi-criteria problems without the aid of analytic guideposts. This study introduces Stochastic Multi attribute Analysis (SMAA), a novel approach to normalization and weighting of characterized life-cycle inventory data for use in comparative Life Cycle Assessment (LCA). The proposed method avoids the bias introduced by external normalization references, and is capable of exploring high uncertainty in both the input parameters and weights.

Contributors

Agent

Created

Date Created
2015

152703-Thumbnail Image.png

Peak travel in a megacity: exploring the role of infrastructure saturation on the suppression of automobile use

Description

Contrary to many previous travel demand forecasts there is increasing evidence that vehicle travel in developed countries may be peaking. The underlying causes of this peaking are still under much debate and there has been a mobilization of research, largely

Contrary to many previous travel demand forecasts there is increasing evidence that vehicle travel in developed countries may be peaking. The underlying causes of this peaking are still under much debate and there has been a mobilization of research, largely focused at the national scale, to study the explanatory drivers but research focused at the metropolitan scale, where transportation policy and planning are frequently decided, is relatively thin. Additionally, a majority of this research has focused on changes within the activity system without considering the impact transportation infrastructure has on overall travel demand. Using Los Angeles County California, we investigate Peak Car and whether the saturation of automobile infrastructure, in addition to societal and economic factors, may be a suppressing factor. After peaking in 2002, vehicle travel in Los Angeles County in 2010 was estimated at 78 billion and was 20.3 billion shy of projections made in 2002. The extent to which infrastructure saturation may contribute to Peak Car is evaluated by analyzing social and economic factors that may have impacted personal automobile usage over the last decade. This includes changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics , travel time and income levels. Summation of all assessed factors reveals there is at least some portion of the 20 billion VMT that is unexplained in all but the worst case scenario. We hypothesize that the unexplained remaining VMT may be explained by infrastructure supply constraints that result in suppression of travel. This finding has impacts on how we see the role of hard infrastructure systems in urban growth and we explore these impacts in the research.

Contributors

Agent

Created

Date Created
2014

155564-Thumbnail Image.png

A Steady State Thermodynamic Model of Concentrating Solar Power with Thermochemical Energy Storage

Description

Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing,

Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study investigates the performance of a 111.7 MWe CSP system coupled with a thermochemical energy storage system (TCES) that uses a redox active metal oxide acting as the heat transfer fluid. A one-dimensional thermodynamic model is introduced for the novel CSP system design, with detailed designs of the underlying nine components developed from first principles and empirical data of the heat transfer media. The model is used to (a) size components, (b) examine intraday operational behaviors of the system against varying solar insolation, (c) calculate annual productivity and performance characteristics over a simulated year, and (d) evaluate factors that affect system performance using sensitivity analysis. Time series simulations use hourly direct normal irradiance (DNI) data for Barstow, California, USA. The nominal system design uses a solar multiple of 1.8 with a storage capacity of six hours for off-sun power generation. The mass of particles to achieve six hours of storage weighs 5,140 metric tonnes. Capacity factor increases by 3.55% for an increase in storage capacity to eight hours which requires an increase in storage volume by 33% or 737 m3, or plant design can be improved by decreasing solar multiple to 1.6 to increase the ratio of annual capacity factor to solar multiple. The solar reduction receiver is the focal point for the concentrated solar energy for inducing an endothermic reaction in the particles under low partial pressure of oxygen, and the reoxidation reactor induces the opposite exothermic reaction by mixing the particles with air to power an air Brayton engine. Stream flow data indicate the solar receiver experiences the largest thermal loss of any component, excluding the solar field. Design and sensitivity analysis of thermal insulation layers for the solar receiver show that additional RSLE-57 insulation material achieves the greatest increase in energetic efficiency of the five materials investigated.

Contributors

Agent

Created

Date Created
2017

154826-Thumbnail Image.png

Addressment of uncertainty and variability in attributional environmental life cycle assessment

Description

'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to

'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to uncertainty and variability in LCA that affects its reliability and credibility. It is pertinent that some part of future research in LCA be guided towards increasing reliability and credibility for decision-making, while utilizing the LCA framework established by ISO 14040.

In this dissertation, I have synthesized the present state of knowledge and application of uncertainty and variability in ‘attributional’ LCA, and contribute to its quantitative assessment.

Firstly, the present state of addressment of uncertainty and variability in LCA is consolidated and reviewed. It is evident that sources of uncertainty and variability exist in the following areas: ISO standards, supplementary guides, software tools, life cycle inventory (LCI) databases, all four methodological phases of LCA, and use of LCA information. One source of uncertainty and variability, each, is identified, selected, quantified, and its implications discussed.

The use of surrogate LCI data in lieu of missing dataset(s) or data-gaps is a source of uncertainty. Despite the widespread use of surrogate data, there has been no effort to (1) establish any form of guidance for the appropriate selection of surrogate data and, (2) estimate the uncertainty associated with the choice and use of surrogate data. A formal expert elicitation-based methodology to select the most appropriate surrogates and to quantify the associated uncertainty was proposed and implemented.

Product-evolution in a non-uniform manner is a source of temporal variability that is presently not considered in LCA modeling. The resulting use of outdated LCA information will lead to misguided decisions affecting the issue at concern and eventually the environment. In order to demonstrate product-evolution within the scope of ISO 14044, and given that variability cannot be reduced, the sources of product-evolution were identified, generalized, analyzed and their implications (individual and coupled) on LCA results are quantified.

Finally, recommendations were provided for the advancement of robustness of 'attributional' LCA, with respect to uncertainty and variability.

Contributors

Agent

Created

Date Created
2016

Transitioning into Complexity-Driven Resilience Assessments for Urban Systems

Description

Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges.

Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane Maria, for example, the energy system took over nine months to recover in parts of the island, thousands of lives were lost, and livelihoods were severely impacted. Urban systems consist of interconnected human networks and physical infrastructure, and the subsequent complexity that is increasingly difficult to make sense of toward resilience enhancing efforts. While the resilience paradigm has continued to progress among and between several disciplinary fields, such as social science and engineering, an ongoing challenge is integrating social and technical approaches for resilience research. Misaligned or siloed perspectives can lead to misinformative and inadequate strategies that undercut inherent capacities or ultimately result in maladaptive infrastructure, social hardship, and sunken investments. This dissertation contributes toward integrating the social and technical resilience domains and transitioning established disaster resilience assessments into complexity perspectives by asking the overarching question: How can a multiplicity of resilience assessments be integrated by geographic and network mapping approaches to better capture the complexity of urban systems, using Hurricane Maria in Puerto Rico as a case study? The first chapter demonstrates how social metrics can be used in a socio-technical network modeling framework for a large-scale electrical system, presents a novel framing of social hardship due to disasters, and proposes a method for developing a social hardship metric using a treatment-effect approach. A second chapter presents a conceptual analysis of disaster resilience indicators from a complexity perspective and links socio-ecological systems resilience principles to tenets of complexity. A third chapter presents a novel methodology for integrating social complexity with performance-based metrics by leveraging distributed ethnographies and a thick mapping approach. Lastly, a concluding chapter synthesizes the previous chapters to discuss a broad framing for socio-technical resilience assessments, the role of space and place as anchors for multiple framings of a complex system, caveats given ongoing developments in Puerto Rico, and implications for collaborative resilience research.

Contributors

Agent

Created

Date Created
2021

157609-Thumbnail Image.png

Urban Heat and Transportation: Human Exposure and Infrastructure

Description

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants and how urban infrastructure design can lead to increased urban heat. Yet there are gaps in understanding how urban communities accumulate heat exposure, and how significantly the urban transportation system influences or exacerbates the many issues of urban heat. This dissertation focuses on advancing the understanding of how modern urban transportation influences urban heat and human heat exposure through three research objectives: 1) Investigate how human activity results in different outdoor heat exposure; 2) Quantify the growth and extent of urban parking infrastructure; and 3) Model and analyze how pavements and vehicles contribute to urban heat.

In the urban US, traveling outdoors (e.g. biking or walking) is the most frequent activity to cause heat exposure during hot periods. However, outdoor travel durations are often very short, and other longer activities such as outdoor housework and recreation contribute more to cumulative urban heat exposure. In Phoenix, parking and roadway pavement infrastructure contributes significantly to the urban heat balance, especially during summer afternoons, and vehicles only contribute significantly in local areas with high density rush hour vehicle travel. Future development of urban areas (especially those with concerns of extreme heat) should focus on ensuring access and mobility for its inhabitants without sacrificing thermal comfort. This may require urban redesign of transportation systems to be less auto-centric, but without clear pathways to mitigating impacts of urban heat, it may be difficult to promote transitions to travel modes that inherently necessitate heat exposure. Transportation planners and engineers need to be cognizant of the pathways to increased urban heat and human heat exposure when planning and designing urban transportation systems.

Contributors

Agent

Created

Date Created
2019

157721-Thumbnail Image.png

Anticipating and adapting to increases in water distribution infrastructure failure caused by interdependencies and heat exposure from climate change

Description

This dissertation advances the capability of water infrastructure utilities to anticipate and adapt to vulnerabilities in their systems from temperature increase and interdependencies with other infrastructure systems. Impact assessment models of increased heat and interdependencies were developed which incorporate probability,

This dissertation advances the capability of water infrastructure utilities to anticipate and adapt to vulnerabilities in their systems from temperature increase and interdependencies with other infrastructure systems. Impact assessment models of increased heat and interdependencies were developed which incorporate probability, spatial, temporal, and operational information. Key findings from the models are that with increased heat the increased likelihood of water quality non-compliances is particularly concerning, the anticipated increases in different hardware components generate different levels of concern starting with iron pipes, then pumps, and then PVC pipes, the effects of temperature increase on hardware components and on service losses are non-linear due to spatial criticality of components, and that modeling spatial and operational complexity helps to identify potential pathways of failure propagation between infrastructure systems. Exploring different parameters of the models allowed for comparison of institutional strategies. Key findings are that either preventative maintenance or repair strategies can completely offset additional outages from increased temperatures though-- improved repair times reduce overall duration of outages more than preventative maintenance, and that coordinated strategies across utilities could be effective for mitigating vulnerability.

Contributors

Agent

Created

Date Created
2019