Matching Items (1,102)
Filtering by

Clear all filters

152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
151370-Thumbnail Image.png
Description
The focus of this document is the examination of a new robot simulator developed to aid students in learning robotics programming and provide the ability to test their programs in a simulated world. The simulator, accessed via a website, provides a simulated environment, programming interface, and the ability to control

The focus of this document is the examination of a new robot simulator developed to aid students in learning robotics programming and provide the ability to test their programs in a simulated world. The simulator, accessed via a website, provides a simulated environment, programming interface, and the ability to control a simulated robot. The simulated environment consists of a user-customizable maze and a robot, which can be controlled manually, via Web service, or by utilizing the Web programming interface. The Web programming interface provides dropdown boxes from which the users may select various options to program their implementations. It is designed to aid new students in the learning of basic skills and thought processes used to program robots. Data was collected and analyzed to determine how effective this system is in helping students learn. This included how quickly students were able to program the algorithms assigned to them and how many lines of code were used to implement them. Students' performance was also monitored to determine how well they were able to use the program and if there were any significant problems. The students also completed surveys to communicate how well the website helped them learn and understand various concepts. The data collected shows that the website was a helpful learning tool for the students and that they were able to use the programming interface quickly and effectively.
ContributorsDrown, Garrett (Author) / Tsai, Wei-Tek (Thesis advisor) / Chen, Yinong (Thesis advisor) / Claveau, David (Committee member) / Arizona State University (Publisher)
Created2012
151431-Thumbnail Image.png
Description
Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same

Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same input. To make things worse, the target erroneous cases may happen just in a few specific runs. Besides, the randomness of user interactions makes the whole debugging procedure more unpredictable. Thus, debugging a multiple threaded application is a tough and challenging task. This thesis introduces a replay mechanism for debugging user interactive multiple threaded Android applications. The approach is based on the 'Lamport Clock' concept, 'Event Driven' implementation and 'Client-Server' architecture. The debugger tool described in this thesis provides a user controlled debugging environment where users or developers are allowed to use modified record application to generate a log file. During the record time, all the necessary events like thread creation, synchronization and user input are recorded. Therefore, based on the information contained in the generated log files, the debugger tool can replay the application off-line since log files provide the deterministic order of execution. In this case, user or developers can replay an application as many times as they need to pinpoint the errors in the applications.
ContributorsLu, He (Author) / Lee, Yann-Hang (Thesis advisor) / Fainekos, Georgios (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012
153384-Thumbnail Image.png
Description
Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught

Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught at either the high school or the college level. To remedy this, I present a new educational system intended to teach computational thinking called Genost. Genost consists of a software tool and a curriculum based on teaching computational thinking through fundamental programming structures and algorithm design. Genost's software design is informed by a review of eight major computer science educational software systems. Genost's curriculum is informed by a review of major literature on computational thinking. In two educational tests of Genost utilizing both college and high school students, Genost was shown to significantly increase computational thinking ability with a large effect size.
ContributorsWalliman, Garret (Author) / Atkinson, Robert (Thesis advisor) / Chen, Yinong (Thesis advisor) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2015
156904-Thumbnail Image.png
Description
Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process

Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process of generating Inertial Movement Unit (IMU) data from multirotor flight sessions, training a linear classifier, and applying said classifier to solve Multi-rotor Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud computing and data storage technologies to host a versatile environment capable of logging, orchestrating, and visualizing the solution for an MAR problem through a user interface. MAR labs extends Arizona State University’s Visual IoT/Robotics Programming Language Environment (VIPLE) as a control platform for multi-rotors used in data collection. VIPLE is a platform developed for teaching computational thinking, visual programming, Internet of Things (IoT) and robotics application development. As a part of this education platform, this work also develops a 3D simulator capable of simulating the programmable behaviors of a robot within a maze environment and builds a physical quadrotor for use in MAR lab experiments.
ContributorsDe La Rosa, Matthew Lee (Author) / Chen, Yinong (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2018
156851-Thumbnail Image.png
Description
There currently exist various challenges in learning cybersecuirty knowledge, along with a shortage of experts in the related areas, while the demand for such talents keeps growing. Unlike other topics related to the computer system such as computer architecture and computer network, cybersecurity is a multidisciplinary topic involving scattered technologies,

There currently exist various challenges in learning cybersecuirty knowledge, along with a shortage of experts in the related areas, while the demand for such talents keeps growing. Unlike other topics related to the computer system such as computer architecture and computer network, cybersecurity is a multidisciplinary topic involving scattered technologies, which yet remains blurry for its future direction. Constructing a knowledge graph (KG) in cybersecurity education is a first step to address the challenges and improve the academic learning efficiency.

With the advancement of big data and Natural Language Processing (NLP) technologies, constructing large KGs and mining concepts, from unstructured text by using learning methodologies, become possible. The NLP-based KG with the semantic similarity between concepts has brought inspiration to different industrial applications, yet far from completeness in the domain expertise, including education in computer science related fields.

In this research work, a KG in cybersecurity area has been constructed using machine-learning-based word embedding (i.e., mapping a word or phrase onto a vector of low dimensions) and hyperlink-based concept mining from the full dataset of words available using the latest Wikipedia dump. The different approaches in corpus training are compared and the performance based on different similarity tasks is evaluated. As a result, the best performance of trained word vectors has been applied, which is obtained by using Skip-Gram model of Word2Vec, to construct the needed KG. In order to improve the efficiency of knowledge learning, a web-based front-end is constructed to visualize the KG, which provides the convenience in browsing related materials and searching for cybersecurity-related concepts and independence relations.
ContributorsLin, Fanjie (Author) / Huang, Dijiang (Thesis advisor) / Hsiao, I-Han (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2018
135340-Thumbnail Image.png
Description
Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and

Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and daily operations. One of the most important parts is being able to predict and foreshadow failures in the system, in order to make sure that those are fixed before they turn into large issues. One specific area where preventive maintenance is a very big part of daily activity is the automotive industry. Automobile owners are encouraged to take their cars in for maintenance on a routine schedule (based on mileage or time), or when their car signals that there is an issue (low oil levels for example). Although this level of maintenance is enough when people are in charge of cars, the rise of autonomous vehicles, specifically self-driving cars, changes that. Now instead of a human being able to look at a car and diagnose any issues, the car needs to be able to do this itself. The objective of this project was to create such a system. The Electronics Preventive Maintenance System is an internal system that is designed to meet all these criteria and more. The EPMS system is comprised of a central computer which monitors all major electronic components in an autonomous vehicle through the use of standard off-the-shelf sensors. The central computer compiles the sensor data, and is able to sort and analyze the readings. The filtered data is run through several mathematical models, each of which diagnoses issues in different parts of the vehicle. The data for each component in the vehicle is compared to pre-set operating conditions. These operating conditions are set in order to encompass all normal ranges of output. If the sensor data is outside the margins, the warning and deviation are recorded and a severity level is calculated. In addition to the individual focus, there's also a vehicle-wide model, which predicts how necessary maintenance is for the vehicle. All of these results are analyzed by a simple heuristic algorithm and a decision is made for the vehicle's health status, which is sent out to the Fleet Management System. This system allows for accurate, effortless monitoring of all parts of an autonomous vehicle as well as predictive modeling that allows the system to determine maintenance needs. With this system, human inspectors are no longer necessary for a fleet of autonomous vehicles. Instead, the Fleet Management System is able to oversee inspections, and the system operator is able to set parameters to decide when to send cars for maintenance. All the models used for the sensor and component analysis are tailored specifically to the vehicle. The models and operating margins are created using empirical data collected during normal testing operations. The system is modular and can be used in a variety of different vehicle platforms, including underwater autonomous vehicles and aerial vehicles.
ContributorsMian, Sami T. (Author) / Collofello, James (Thesis director) / Chen, Yinong (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136654-Thumbnail Image.png
Description
Many psychology-rooted studies into the games industry seek to identify emotions players experience during gameplay. However, there is a need to extend this kind of research beyond the realm of emotion into more long-term concepts, like satisfaction. This experiment tested whether a specific game mechanic was enjoyable. Other literature has

Many psychology-rooted studies into the games industry seek to identify emotions players experience during gameplay. However, there is a need to extend this kind of research beyond the realm of emotion into more long-term concepts, like satisfaction. This experiment tested whether a specific game mechanic was enjoyable. Other literature has established a way to describe and quantify enjoyability. Using a survey based on that work, this study evaluated the addition of a 'gel gun' to a platforming game. The fun was found to significantly increase players' affective experiences, concentration, and sense of control, all being components of an enjoyable experience. It also exposed some conflicts within the survey that merit investigation. It was concluded that the 'gel gun' feature increased gameplay enjoyability without significantly diminishing any other enjoyable factors. Future work may explore the connections between this feature and specific elements of enjoyment.
ContributorsMints, John (Author) / Meuth, Ryan (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor)
Created2014-12