Matching Items (22)

127927-Thumbnail Image.png

Development of Antibody Therapeutics against Flaviviruses

Description

Recent outbreaks of Zika virus (ZIKV) highlight the urgent need to develop efficacious interventions against flaviviruses, many of which cause devastating epidemics around the world. Monoclonal antibodies (mAb) have been

Recent outbreaks of Zika virus (ZIKV) highlight the urgent need to develop efficacious interventions against flaviviruses, many of which cause devastating epidemics around the world. Monoclonal antibodies (mAb) have been at the forefront of treatment for cancer and a wide array of other diseases due to their specificity and potency. While mammalian cell-produced mAbs have shown promise as therapeutic candidates against several flaviviruses, their eventual approval for human application still faces several challenges including their potential risk of predisposing treated patients to more severe secondary infection by a heterologous flavivirus through antibody-dependent enhancement (ADE). The high cost associated with mAb production in mammalian cell cultures also poses a challenge for the feasible application of these drugs to the developing world where the majority of flavivirus infection occurs. Here, we review the current therapeutic mAb candidates against various flaviviruses including West Nile (WNV), Dengue virus (DENV), and ZIKV. The progress of using plants for developing safer and more economical mAb therapeutics against flaviviruses is discussed within the context of their expression, characterization, downstream processing, neutralization, and in vivo efficacy. The progress of using plant glycoengineering to address ADE, the major impediment of flavivirus therapeutic development, is highlighted. These advancements suggest that plant-based systems are excellent alternatives for addressing the remaining challenges of mAb therapeutic development against flavivirus and may facilitate the eventual commercialization of these drug candidates.

Contributors

Agent

Created

Date Created
  • 2017-12-25

128211-Thumbnail Image.png

A Plant-Produced Antigen Elicits Potent Immune Responses against West Nile Virus in Mice

Description

We described the rapid production of the domain III (DIII) of the envelope (E) protein in plants as a vaccine candidate for West Nile Virus (WNV). Using various combinations of

We described the rapid production of the domain III (DIII) of the envelope (E) protein in plants as a vaccine candidate for West Nile Virus (WNV). Using various combinations of vector modules of a deconstructed viral vector expression system, DIII was produced in three subcellular compartments in leaves of Nicotiana benthamiana by transient expression. DIII expressed at much higher levels when targeted to the endoplasmic reticulum (ER) than that targeted to the chloroplast or the cytosol, with accumulation level up to 73 μg DIII per gram of leaf fresh weight within 4 days after infiltration. Plant ER-derived DIII was soluble and readily purified to > 95% homogeneity without the time-consuming process of denaturing and refolding. Further analysis revealed that plant-produced DIII was processed properly and demonstrated specific binding to an anti-DIII monoclonal antibody that recognizes a conformational epitope. Furthermore, subcutaneous immunization of mice with 5 and 25 μg of purified DIII elicited a potent systemic response. This study provided the proof of principle for rapidly producing immunogenic vaccine candidates against WNV in plants with low cost and scalability.

Contributors

Agent

Created

Date Created
  • 2014-04-03

128212-Thumbnail Image.png

Plant-Made Biologics

Description

The increasing world demand for human biologics cannot be met by current production platforms based primarily on mammalian cell culture due to prohibitive cost and limited scalability [1]. Recent progress

The increasing world demand for human biologics cannot be met by current production platforms based primarily on mammalian cell culture due to prohibitive cost and limited scalability [1]. Recent progress in plant expression vector development, downstream processing, and glycoengineering has established plants as a superior alternative to biologic production [2–4]. Plants not only offer the traditional advantages of proper eukaryotic protein modification, potential low cost, high scalability, and increased safety but also allow the production of biologics at unprecedented speed to control potential pandemics or with specific glycoforms for better efficacy or safety (biobetters) [5, 6]. The approval of the first plant-made biologic (PMB) by the United States Food and Drug Administration (FDA) for treating Gaucher’s disease heralds a new era for PMBs and sparks new innovations in this field [7, 8].

Contributors

Agent

Created

Date Created
  • 2014-06-02

128078-Thumbnail Image.png

Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice

Description

Several Zika virus (ZIKV) vaccine candidates have recently been described which use inactivated whole virus, DNA or RNA that express the virus’ Envelope (E) glycoprotein as the antigen. These were

Several Zika virus (ZIKV) vaccine candidates have recently been described which use inactivated whole virus, DNA or RNA that express the virus’ Envelope (E) glycoprotein as the antigen. These were successful in stimulating production of virus-targeted antibodies that protected animals against ZIKV challenges, but their use potentially will predispose vaccinated individuals to infection by the related Dengue virus (DENV). We have devised a virus like particle (VLP) carrier based on the hepatitis B core antigen (HBcAg) that displays the ZIKV E protein domain III (zDIII), and shown that it can be produced quickly and easily purified in large quantities from Nicotiana benthamiana plants. HBcAg-zDIII VLPs are shown to be highly immunogenic, as two doses elicited potent humoral and cellular responses in mice that exceed the threshold correlated with protective immunity against multiple strains of Zika virus. Notably, HBcAg-zDIII VLPs-elicited antibodies did not enhance the infection of DENV in Fc gamma receptor-expressing cells, offsetting the concern of ZIKV vaccines inducing cross-reactive antibodies and sensitizing people to subsequent DENV infection. Thus, our zDIII-based vaccine offers improved safety and lower cost production than other current alternatives, with equivalent effectiveness.

Contributors

Agent

Created

Date Created
  • 2017-08-09

136192-Thumbnail Image.png

Xerostomia and the Microbiome of the Mouth

Description

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore, the relationship between the microbiome and its host is mutually beneficial because the host is providing microbes with an environment in which they can flourish and, in turn, keep their host healthy. Reviewing examples of larger scale environmental shifts could provide a window by which scientists can make hypotheses. Certain medications and healthcare treatments have been proven to cause xerostomia. This disorder is characterized by a dry mouth, and known to be associated with a change in the composition, and reduction, of saliva. Two case studies performed by Bardow et al, and Leal et al, tested and studied the relationships of certain medications and confirmed their side effects on the salivary glands [2,3]. Their results confirmed a relationship between specific medicines, and the correlating complaints of xerostomia. In addition, Vissink et al conducted case studies that helped to further identify how radiotherapy causes hyposalivation of the salivary glands [4]. Specifically patients that have been diagnosed with oral cancer, and are treated by radiotherapy, have been diagnosed with xerostomia. As stated prior, studies have shown that patients having an ecologically balanced and diverse microbiome tend to have healthier mouths. The oral cavity is like any biome, consisting of commensalism within itself and mutualism with its host. Due to the decreased salivary output, caused by xerostomia, increased parasitic bacteria build up within the oral cavity thus causing dental disease. Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The Human Oral Microbiomics Database (HOMD) is a set of reference 16S rRNA gene sequences. These are then used to define individual human oral taxa. By conducting metagenomic experiments at the molecular and cellular level, scientists can identify and label micro species that inhabit the mouth during parasitic outbreaks or a shifting of the microbiome. Because the HOMD is incomplete, so is our ability to cure, or prevent, oral disease. The purpose of the thesis is to research what is known about xerostomia and its effects on the complex microbiome of the oral cavity. It is important that researchers determine whether this particular perspective is worth considering. In addition, the goal is to create novel experiments for treatment and prevention of dental diseases.

Contributors

Agent

Created

Date Created
  • 2015-05

131741-Thumbnail Image.png

Delineating the role of methionyl-tRNA-formyltransferase (MTFMT) splice mutation (c.626C>T ) in OXPHOS and Energy Metabolism

Description

Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial

Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I, III and IV of the ETC. To understand this mechanism, it is necessary to perform a comprehensive analysis of energy metabolism and oxidative phosphorylation (OXPHOS) among impacted patients. Alterations to this gene vary, with the most documented as a single-splice-site mutation (c.626C>T). Here, we discuss MTFMT involvement in mitochondrial protein translation and neurodegenerative disorders, such as Leigh Syndrome and combined OXPHOS deficiency, in two families. We aim to delineate the impact of OXPHOS dysfunction in patients presenting with MTFMT mutation.

Contributors

Agent

Created

Date Created
  • 2020-05

135235-Thumbnail Image.png

Cloning Hepatitis B core-West Nile DIII DNA sequence into Gemini Viral Vector using Molecular Biology techniques.

Description

Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs

Virus-Like Particles (VLPs) are self-assembling structures that lack the viral genetic material. Therefore they are safer and more immunogenic than other forms of vaccines. The Hepatitis B core (HBc) VLPs are a novel mechanism through which delivery of DNA-based human vaccines are plausible. Production of VLPs require recombinant, rapidly replicating, plant-based systems such as the geminiviral replicon system. This project entails the cloning process of HBc-DIII fusion protein, a VLP that should form Domain III of the Envelope protein on West Nile Virus, into deconstructed geminiviral vector. The cloning process includes the HBc-DIII fusion protein DNA isolation, restriction enzyme digestion with NcoI and SacI, PCR changing the NcoI site on the HBc-DIII insert to XbaI, sequencing, ligation into geminiviral vector and transformation into an agrobacterium strain. The major impediment to the cloning process was the presence of multiple bands instead of the expected two bands while doing restriction enzyme digests. The troubleshooting process enabled speculating that due to the excess of restriction enzymes in the digestion volume, some of the DNA was not digested completely. Hence, multiple bands were observed. However, sequencing analysis and further cloning process ensured the presence of HBc-DIII insert band (approximately 800bp) in the Gemini vector. Lastly, the construct HBc-DIII in Gemini vector was ensured to be in agrobacterium for further experiments such as agro-infiltration.

Contributors

Agent

Created

Date Created
  • 2016-05

133792-Thumbnail Image.png

The Production of a Chimeric Monoclonal Antibody as a Therapeutic Agent Against Flaviviruses

Description

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium

A chimeric, humanized monoclonal antibody that recognizes a highly conserved fusion loop found on flaviviruses was constructed with a geminiviral replicon and transiently expressed in Nicotiana benthamiana plants through Agrobacterium tumefaciens infiltration. Characterization and expression studies were then conducted to confirm correct assembly of the antibody. Once the antibody was purified, an ELISA was conducted to validate that the antibody was able to bind to the flavivirus fusion loop.

Contributors

Agent

Created

Date Created
  • 2018-05

131473-Thumbnail Image.png

Evaluation of Plant-based Viral Vectors for West Nile Virus Antibody Expression Levels

Description

Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein

Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein expression. For this project two different plant viral vectors were compared; the geminiviral vector derived from Bean yellow dwarf virus (BeYDV) and the MagnICON vector system derived from Tobacco Mosaic Virus(TMV) and Potato Virus X(PVX). E16, an antibody against West Nile virus, has previously been expressed using both systems but expression levels between the systems were not directly compared. Agrobacterium tumefaciens EHA105 cells were transformed with both systems and expression levels of E16 were quantified using ELISAs. Results showed very low expression levels of E16 using the geminiviral vector indicating a need for further investigation into the clone used as previous studies reported much higher expression levels with the system.

Contributors

Agent

Created

Date Created
  • 2020-05

133440-Thumbnail Image.png

Detoxifying Lipid A in Agrobacterium tumefaciens

Description

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.

Contributors

Agent

Created

Date Created
  • 2018-05