Matching Items (775)
Filtering by

Clear all filters

133353-Thumbnail Image.png
Description
This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University of Colorado Boulder, is an on-chip spectrometer designed with a multiplexed readout with multiple KIDs that is set up for

This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University of Colorado Boulder, is an on-chip spectrometer designed with a multiplexed readout with multiple KIDs that is set up for a broadband transmission of these measurements. It is useful for detecting radiation in the mm and sub mm wavelengths which is significant since absorption and reemission of photons by dust causes radiation from distant objects to reach us in infrared and far-infrared bands. In preparation for testing, our team installed stages designed previously by Paul Abers and his group into our cryostat and designed and installed other parts necessary for the cryostat to be able to test devices on the 250 mK stage. This work included the design and construction of additional parts, a new setup for the wiring in the cryostat, the assembly, testing, and installation of several stainless steel coaxial cables for the measurements through the devices, and other cryogenic and low pressure considerations. The SuperSpec KID was successfully tested on this 250 mK stage thus confirming that the new setup is functional. Our results are in agreement with existing models which suggest that the breaking of cooper pairs in the detector's superconductor which occurs in response to temperature, optical load, and readout power will decrease the resonant frequencies. A negative linear relationship in our results appears, as expected, since the parameters are varied only slightly so that a linear approximation is appropriate. We compared the rate at which the resonant frequency responded to temperature and found it to be close to the expected value.
ContributorsDiaz, Heriberto Chacon (Author) / Mauskopf, Philip (Thesis director) / McCartney, Martha (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133355-Thumbnail Image.png
Description
This study estimates the capitalization effect of golf courses in Maricopa County using the hedonic pricing method. It draws upon a dataset of 574,989 residential transactions from 2000 to 2006 to examine how the aesthetic, non-golf benefits of golf courses capitalize across a gradient of proximity measures. The measures for

This study estimates the capitalization effect of golf courses in Maricopa County using the hedonic pricing method. It draws upon a dataset of 574,989 residential transactions from 2000 to 2006 to examine how the aesthetic, non-golf benefits of golf courses capitalize across a gradient of proximity measures. The measures for amenity value extend beyond home adjacency and include considerations for homes within a range of discrete walkability buffers of golf courses. The models also distinguish between public and private golf courses as a proxy for the level of golf course access perceived by non-golfers. Unobserved spatial characteristics of the neighborhoods around golf courses are controlled for by increasing the extent of spatial fixed effects from city, to census tract, and finally to 2000 meter golf course ‘neighborhoods.’ The estimation results support two primary conclusions. First, golf course proximity is found to be highly valued for adjacent homes and homes up to 50 meters way from a course, still evident but minimal between 50 and 150 meters, and insignificant at all other distance ranges. Second, private golf courses do not command a higher proximity premia compared to public courses with the exception of homes within 25 to 50 meters of a course, indicating that the non-golf benefits of courses capitalize similarly, regardless of course type. The results of this study motivate further investigation into golf course features that signal access or add value to homes in the range of capitalization, particularly for near-adjacent homes between 50 and 150 meters thought previously not to capitalize.
ContributorsJoiner, Emily (Author) / Abbott, Joshua (Thesis director) / Smith, Kerry (Committee member) / Economics Program in CLAS (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133364-Thumbnail Image.png
Description
The objective of this paper is to provide an educational diagnostic into the technology of blockchain and its application for the supply chain. Education on the topic is important to prevent misinformation on the capabilities of blockchain. Blockchain as a new technology can be confusing to grasp given the wide

The objective of this paper is to provide an educational diagnostic into the technology of blockchain and its application for the supply chain. Education on the topic is important to prevent misinformation on the capabilities of blockchain. Blockchain as a new technology can be confusing to grasp given the wide possibilities it can provide. This can convolute the topic by being too broad when defined. Instead, the focus will be maintained on explaining the technical details about how and why this technology works in improving the supply chain. The scope of explanation will not be limited to the solutions, but will also detail current problems. Both public and private blockchain networks will be explained and solutions they provide in supply chains. In addition, other non-blockchain systems will be described that provide important pieces in supply chain operations that blockchain cannot provide. Blockchain when applied to the supply chain provides improved consumer transparency, management of resources, logistics, trade finance, and liquidity.
ContributorsKrukar, Joel Michael (Author) / Oke, Adegoke (Thesis director) / Duarte, Brett (Committee member) / Hahn, Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133379-Thumbnail Image.png
Description
The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul

The Super Catalan numbers are a known set of numbers which have so far eluded a combinatorial interpretation. Several weighted interpretations have appeared since their discovery, one of which was discovered by William Kuszmaul in 2017. In this paper, we connect the weighted Super Catalan structure created previously by Kuszmaul and a natural $q$-analogue of the Super Catalan numbers. We do this by creating a statistic $\sigma$ for which the $q$ Super Catalan numbers, $S_q(m,n)=\sum_X (-1)^{\mu(X)} q^{\sigma(X)}$. In doing so, we take a step towards finding a strict combinatorial interpretation for the Super Catalan numbers.
ContributorsHouse, John Douglas (Author) / Fishel, Susanna (Thesis director) / Childress, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131503-Thumbnail Image.png
Description
Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have

Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have researched the benefits of digital manipulatives and digital environments through student completion of tasks and testing. This study intends to research students’ use of the digital tools and manipulatives, along with the students’ interactions with the digital environment. To this end, I conducted exploratory teaching experiments with two calculus I students.
In the exploratory teaching experiments, students were introduced to a GeoGebra application developed by Fischer (2019), which includes instructional videos and corresponding quizzes, as well as exercises and interactive notepads, where students could use digital tools to construct line segments and circles (corresponding to the physical straight-edge and compass). The application built up the students’ foundational knowledge, culminating in the construction and verbal proof of Euclid’s Elements, Proposition 1 (Euclid, 1733).
The central findings of this thesis are the students’ interactions with the digital environment, with observed changes in their conceptions of radii and circles, and in their use of tools. The students were observed to have conceptions of radii as a process, a geometric shape, and a geometric object. I observed the students’ conceptions of a circle change from a geometric shape to a geometric object, and with that change, observed the students’ use of tools change from a measuring focus to a property focus.
I report a summary of the students’ work and classify their reasoning and actions into the above categories, and an analysis of how the digital environment impacts the students’ conceptions. I also briefly discuss the impact of the findings on pedagogy and future research.
ContributorsSakauye, Noelle Marie (Author) / Roh, Kyeong Hah (Thesis director) / Zandieh, Michelle (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131516-Thumbnail Image.png
Description
The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity,

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity, the concentration of organic content, and spiking E. coli grown in tryptic soy broth (TSB); chlorine was introduced using Clorox Disinfecting Bleach2. Bacteria was detected using tryptic soy agar (TSA), and E. coli was specifically detected using the selective media, brilliance. The log inactivation of bacteria detected using TSA was shown to be inversely related to the turbidity of the solution. Complete inactivation of E. coli concentrations between 104-105 CFU/100 ml in gray water with turbidities between 10-100 NTU, 0.1-0.5 mg/L of humic acid, and 0.1 ml of Dawn Ultra, was shown to occur, as detected by brilliance, at chlorine concentrations of 1-2 mg/L within 30 seconds. These result in concentration time (CT) values between 0.5-1 mg/L·min. Under the same gray water conditions, and an E. coli concentration of 104 CFU/100 ml and a chlorine concentration of 0.01 mg/L, complete inactivation was shown to occur in all trials within two minutes. These result in CT values ranging from 0.005 to 0.02. The turbidity and humic acid concentration were shown to be inversely related to the log inactivation and directly related to the CT value. This study shows that chlorination is a valid method of treatment of gray water for certain irrigation reuses.
ContributorsGreenberg, Samuel Gabe (Author) / Abbaszadegan, Morteza (Thesis director) / Schoepf, Jared (Committee member) / Alum, Absar (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131522-Thumbnail Image.png
Description
Increasing energy and environmental problems describe the need to develop renewable chemicals and fuels. Global research has been targeting using microbial systems on a commercial scale for synthesis of valuable compounds. The goal of this project was to refactor and overexpress b6-f complex proteins in cyanobacteria to improve photosynthesis under

Increasing energy and environmental problems describe the need to develop renewable chemicals and fuels. Global research has been targeting using microbial systems on a commercial scale for synthesis of valuable compounds. The goal of this project was to refactor and overexpress b6-f complex proteins in cyanobacteria to improve photosynthesis under dynamic light conditions. Improvement in the photosynthetic system can directly relate to higher yields of valuable compounds such as carotenoids and higher yields of biomass which can be used as energy molecules. Four engineered strains of cyanobacteria were successfully constructed and overexpressed the corresponding four large subunits in the cytochrome b6-f complex. No significant changes were found in cell growth or pigment titer in the modified strains compared to the wild type. The growth assay will be performed at higher and/or dynamic light intensities including natural light conditions for further analysis.
ContributorsNauroth, Benjamin (Author) / Varman, Arul (Thesis director) / Singharoy, Abhishek (Committee member) / Li, Han (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133887-Thumbnail Image.png
Description
This thesis evaluates the viability of an original design for a cost-effective wheel-mounted dynamometer for road vehicles. The goal is to show whether or not a device that generates torque and horsepower curves by processing accelerometer data collected at the edge of a wheel can yield results that are comparable

This thesis evaluates the viability of an original design for a cost-effective wheel-mounted dynamometer for road vehicles. The goal is to show whether or not a device that generates torque and horsepower curves by processing accelerometer data collected at the edge of a wheel can yield results that are comparable to results obtained using a conventional chassis dynamometer. Torque curves were generated via the experimental method under a variety of circumstances and also obtained professionally by a precision engine testing company. Metrics were created to measure the precision of the experimental device's ability to consistently generate torque curves and also to compare the similarity of these curves to the professionally obtained torque curves. The results revealed that although the test device does not quite provide the same level of precision as the professional chassis dynamometer, it does create torque curves that closely resemble the chassis dynamometer torque curves and exhibit a consistency between trials comparable to the professional results, even on rough road surfaces. The results suggest that the test device provides enough accuracy and precision to satisfy the needs of most consumers interested in measuring their vehicle's engine performance but probably lacks the level of accuracy and precision needed to appeal to professionals.
ContributorsKing, Michael (Author) / Ren, Yi (Thesis director) / Spanias, Andreas (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05