Matching Items (3)
Filtering by

Clear all filters

153320-Thumbnail Image.png
Description
This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of

This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.
ContributorsChatterjee, Saugata (Author) / Parikh, Maulik K (Thesis advisor) / Easson, Damien (Committee member) / Davies, Paul (Committee member) / Arizona State University (Publisher)
Created2014
129485-Thumbnail Image.png
Description

The topological contribution of a Gauss–Bonnet term in four dimensions to black hole entropy opens up the possibility of a violation of the second law of thermodynamics in black hole mergers. We show, however, that the second law is not violated in the regime where Einstein–Gauss–Bonnet holds as an effective

The topological contribution of a Gauss–Bonnet term in four dimensions to black hole entropy opens up the possibility of a violation of the second law of thermodynamics in black hole mergers. We show, however, that the second law is not violated in the regime where Einstein–Gauss–Bonnet holds as an effective theory and black holes can be treated thermodynamically. For mergers of anti-de Sitter (AdS) black holes, the second law appears to be violated even in Einstein gravity; we argue, however, that the second law holds when gravitational potential energy is taken into account.

ContributorsChatterjee, Saugata (Author) / Parikh, Maulik (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-07
128220-Thumbnail Image.png
Description

We show that effective theories of matter that classically violate the null energy condition cannot be minimally coupled to Einstein gravity without being inconsistent with both string theory and black hole thermodynamics. We argue however that they could still be either non-minimally coupled or coupled to higher-curvature theories of gravity.

Created2015-03-16