Matching Items (39)
Filtering by

Clear all filters

153164-Thumbnail Image.png
Description
Alternative Project Delivery Methods (APDMs), namely Design Build (DB) and Construction Manager at Risk (CMAR), grew out of the need to find a more efficient project delivery approach than the traditional Design Bid Build (DBB) form of delivery. After decades of extensive APDM use, there have been many studies focused

Alternative Project Delivery Methods (APDMs), namely Design Build (DB) and Construction Manager at Risk (CMAR), grew out of the need to find a more efficient project delivery approach than the traditional Design Bid Build (DBB) form of delivery. After decades of extensive APDM use, there have been many studies focused on the use of APDMs and project outcomes. Few of these studies have reached a level of statistical significance to make conclusive observations about APDMs. This research effort completes a comprehensive study for use in the horizontal transportation construction market, providing a better basis for decisions on project delivery method selection, improving understanding of best practices for APDM use, and reporting outcomes from the largest collection of APDM project data to date. The study is the result of an online survey of project owners and design teams from 17 states representing 83 projects nationally. Project data collected represents almost six billion US dollars. The study performs an analysis of the transportation APDM market and answers questions dealing with national APDM usage, motivators for APDM selection, the relation of APDM to pre-construction services, and the use of industry best practices. Top motivators for delivery method selection: the project schedule or the urgency of the project, the ability to predict and control cost, and finding the best method to allocate risk, as well as other factors were identified and analyzed. Analysis of project data was used to compare to commonly held assumptions about the project delivery methods, confirming some assumptions and refuting others. Project data showed that APDM projects had the lowest overall cost growth. DB projects had higher schedule growth. CMAR projects had low design schedule growth but high construction schedule growth. DBB showed very little schedule growth and the highest cost growth of the delivery methods studied. Best practices in project delivery were studied: team alignment, front end planning, and risk assessment were identified as practices most critical to project success. The study contributes and improves on existing research on APDM project selection and outcomes and fills many of the gaps in research identified by previous research efforts and industry leaders.
ContributorsBingham, Evan Dale (Author) / Gibson Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2014
153273-Thumbnail Image.png
Description
The current paradigm to addressing the marginal increases in productivity and quality in the construction industry is to embrace new technologies and new programs designed to increase productivity. While both pursuits are justifiable and worthwhile they overlook a crucial element, the human element. If the individuals and teams operating the

The current paradigm to addressing the marginal increases in productivity and quality in the construction industry is to embrace new technologies and new programs designed to increase productivity. While both pursuits are justifiable and worthwhile they overlook a crucial element, the human element. If the individuals and teams operating the new technologies or executing the new programs lack all of the necessary skills the efforts are still doomed for, at best, mediocrity. But over the past two decades researchers and practitioners have been exploring and experimenting with a softer set of skills that are producing hard figures showing real improvements in performance.
ContributorsMischung, Joshua (Author) / Sullivan, Kenneth T. (Thesis advisor) / El Asmar, Mounir (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2014
153242-Thumbnail Image.png
Description
Over the last two decades, Alternative Project Delivery Methods (APDM), such as Design-Build (DB), have become more popular in the construction industry, specifically in the U.S., and the competition for APDM projects has risen among construction companies. The Engineering News Record (ENR) magazine analyzes DB firms and publishes the list

Over the last two decades, Alternative Project Delivery Methods (APDM), such as Design-Build (DB), have become more popular in the construction industry, specifically in the U.S., and the competition for APDM projects has risen among construction companies. The Engineering News Record (ENR) magazine analyzes DB firms and publishes the list of the top 100 every year. According to ENR articles and many scientific papers, the implementation of DB method has grown drastically over the last decade, however, information about growth trends depending on firm size and segment is lacking. Also missing is knowledge the future market trends over the next five years. Furthermore, public agencies and DB firms may be worried that DB projects do not distribute wealth equally among DB firms. Using the top 100 firms deemed representative of the DB market, the author has divided the market into volumes based on rankings to analyze the total DB market revenue growth. A comparison between international and domestic revenues indicated that the top five DB firms have 64% more involvement in the international market compared to the domestic market. Furthermore, while the research shows increasing market share only for the top five firms, the author has found that (1) a large portion of their market share is due to a large growth in their international market, and (2) revenues for all volumes of the DB market have increased. Moreover, regression and time series analyses allow for the forecasting of the DB market growth, which the author anticipate to move from about $100B to about $150B in 2020.
ContributorsVashani, Hossein (Author) / El Asmar, Mounir (Thesis advisor) / Ernzen, James (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2014
150210-Thumbnail Image.png
Description
Trenchless technologies have emerged as a viable alternative to traditional open trench methods for installing underground pipelines and conduits. Pilot Tube Microtunneling, also referred to as the pilot tube system of microtunneling, guided auger boring, or guided boring method, is a recent addition to the family of trenchless installation methods.

Trenchless technologies have emerged as a viable alternative to traditional open trench methods for installing underground pipelines and conduits. Pilot Tube Microtunneling, also referred to as the pilot tube system of microtunneling, guided auger boring, or guided boring method, is a recent addition to the family of trenchless installation methods. Pilot tube microtunneling originated in Japan and Europe, and was introduced to the United States in the year 1995 (Boschert 2007). Since then this methodology has seen increased utilization across North America particularity in municipal markets for the installation of gravity sewers. The primary reason contributing to the growth of pilot tube microtunneling is the technology's capability of installing pipes at high precision in terms of line and grade, in a wide range of ground conditions using relatively inexpensive equipment. The means and methods, applicability, capabilities and limitations of pilot tube microtunneling are well documented in published literature through many project specific case studies. However, there is little information on the macroscopic level regarding the technology and industry as a whole. With the increasing popularity of pilot tube microtunneling, there is an emerging need to address the above issues. This research effort surveyed 22 pilot tube microtunneling contractors across North America to determine the current industry state of practice with the technology. The survey examined various topics including contractor profile and experience; equipment, methods, and pipe materials utilized; and issues pertaining to project planning and construction risks associated with the pilot tube method. The findings of this research are based on a total of 450 projects completed with pilot tube microtunneling between 2006 and 2010. The respondents were diverse in terms of their experience with PTMT, ranging from two to 11 years. A majority of the respondents have traditionally provided services with other trenchless technologies. As revealed by the survey responses, PTMT projects grew by 110% between the years 2006 and 2010. It was found that almost 72% of the 450 PTMT projects completed between 2006 and 2010 by the respondents were for sanitary sewers. Installation in cobbles and boulders was rated as the highest risk by the contractors.
ContributorsGottipati, Vamseedhar (Author) / Lueke, Jason S (Thesis advisor) / Ariaratnam, Samuel T (Committee member) / Chasey, Allan (Committee member) / Arizona State University (Publisher)
Created2011
150567-Thumbnail Image.png
Description
Nowadays there is a pronounced interest in the need for sustainable and reliable infrastructure systems to address the challenges of the future infrastructure development. This dissertation presents the research associated with understanding various sustainable and reliable design alternatives for water distribution systems. Although design of water distribution networks (WDN) is

Nowadays there is a pronounced interest in the need for sustainable and reliable infrastructure systems to address the challenges of the future infrastructure development. This dissertation presents the research associated with understanding various sustainable and reliable design alternatives for water distribution systems. Although design of water distribution networks (WDN) is a thoroughly studied area, most researchers seem to focus on developing algorithms to solve the non-linear hard kind of optimization problems associated with WDN design. Cost has been the objective in most of the previous studies with few models considering reliability as a constraint, and even fewer models accounting for the environmental impact of WDN. The research presented in this dissertation combines all these important objectives into a multi-objective optimization framework. The model used in this research is an integration of a genetic algorithm optimization tool with a water network solver, EPANET. The objectives considered for the optimization are Life Cycle Costs (LCC) and Life Cycle Carbon Dioxide (CO2) Emissions (LCE) whereby the system reliability is made a constraint. Three popularly used resilience metrics were investigated in this research for their efficiency in aiding the design of WDNs that are able to handle external natural and man-made shocks. The best performing resilience metric is incorporated into the optimization model as an additional objective. Various scenarios were developed for the design analysis in order to understand the trade-offs between different critical parameters considered in this research. An approach is proposed and illustrated to identify the most sustainable and resilient design alternatives from the solution set obtained by the model employed in this research. The model is demonstrated by using various benchmark networks that were studied previously. The size of the networks ranges from a simple 8-pipe system to a relatively large 2467-pipe one. The results from this research indicate that LCE can be reduced at a reasonable cost when a better design is chosen. Similarly, resilience could also be improved at an additional cost. The model used in this research is more suitable for water distribution networks. However, the methodology could be adapted to other infrastructure systems as well.
ContributorsPiratla, Kalyan Ram (Author) / Ariaratnam, Samuel T (Thesis advisor) / Chasey, Allan (Committee member) / Lueke, Jason (Committee member) / Arizona State University (Publisher)
Created2012
150799-Thumbnail Image.png
Description
Public-Private Partnerships (P3) in North America have become a trend in the past two decades and are gaining attention in the transportation industry with some large scale projects being delivered by this approach. This is due to the need for alternative funding sources for public projects and for improved efficiency

Public-Private Partnerships (P3) in North America have become a trend in the past two decades and are gaining attention in the transportation industry with some large scale projects being delivered by this approach. This is due to the need for alternative funding sources for public projects and for improved efficiency of these projects in order to save time and money. Several research studies have been done, including mature markets in Europe and Australia, on the cost and schedule performance of transportation projects but no similar study has been conducted in North America. This study focuses on cost and schedule performance of twelve P3 transportation projects during their construction phase, costing over $100 million each, consisting of roads and bridges only with no signature tunnels. The P3 approach applied in this study is the Design-Build-Finance-Operate-Maintain (DBFOM) model and the results obtained are compared with similar research studies on North American Design-Build (DB) and Design-Bid-Build (DBB) projects. The schedule performance for P3 projects in this study was found to be -0.23 percent versus estimated as compared to the 4.34 percent for the DBB projects and 11.04 percent for the DB projects in the Shrestha study, indicating P3 projects are completed in less time than other methods. The cost performance in this study was 0.81 percent for the P3 projects while in the Shrestha study the average cost increase for the four DB projects was found to be 1.49 percent while for the DBB projects it was 12.71 percent, again indicating P3 projects reduce cost compared to other delivery approaches. The limited number of projects available for this study does not allow us to draw an explicit conclusion on the performance of P3s in North America but paves the way for future studies to explore more data as it becomes available. However, the results in this study show that P3 projects have good cost and schedule adherence to the contract requirements. This study gives us an initial comparison of P3 performance with the more traditional approach and shows us the empirical benefits and limitations of the P3 approach in the highway construction industry.
ContributorsBansal, Ankita (Author) / Chasey, Allan (Thesis advisor) / Gibson, Edd (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2012
154130-Thumbnail Image.png
Description
Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed

Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of LEED certified buildings.

This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.

From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015
154179-Thumbnail Image.png
Description
In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance, and they are starting to become adopted in the construction

In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance, and they are starting to become adopted in the construction projects. Most of the previous research done in this area was purely qualitative, with a few quantitative studies. This study aims to quantify the performance of incentives in construction by collecting the data from more than 30 projects in United States through a questionnaire survey. First, literature review addresses the previous research work related to incentive types, incentives in construction industry, incentives in other industry and benefits of incentives. Second, the collected data is analyzed with statistical methods to test the significance of observed changes between two data sets i.e. incentive projects and non-incentive projects. Finally, the analysis results provide evidence for the significant impact of having incentives; reduced the cost and schedule growth in construction projects in United States.
ContributorsPaladugu, Bala Sai Krishna (Author) / El Asmar, Mounir (Thesis advisor) / Ernzen, James (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2015
155970-Thumbnail Image.png
Description
This research explores some of the issues, challenges and dilemmas of existing research found in the construction workforce, it starts with past research that can be found on the current problems in the industry and how it has developed. It covers the distinguishing factors that influence a construction company's success

This research explores some of the issues, challenges and dilemmas of existing research found in the construction workforce, it starts with past research that can be found on the current problems in the industry and how it has developed. It covers the distinguishing factors that influence a construction company's success and how it has affected depending on the characteristics of the company. It was to examine the effectiveness of the recruitment and selection practices of entrants in the construction industry workforce and pathways to improve those practices.
ContributorsHatfield, Whitney (Author) / Ariaratnam, Samuel (Thesis advisor) / Chasey, Allan (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2017
156897-Thumbnail Image.png
Description
The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting

The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting the benefits of reduced project schedule and cost. The main purpose of this study is to conduct a qualitative and quantitative performance evaluation to assess the current impact of APDM in the water and wastewater industry. A national survey was conducted targeting completed water and wastewater treatment plant projects. Responses were obtained from 75 utilities and constructors that either completed their projects using DBB, construction manager at risk (CMAR), or design-build (DB). Data analysis revealed that CMAR and DB statistically outperformed DBB in terms of project speed and intensity. Performance metrics such as cost growth, schedule growth, unit cost, factors influencing project delivery method selection, scope changes, warranty and latent defects, and several others are also evaluated. The main contribution of this study was that it was able to show that for the same project cost, water and wastewater treatment plants could be delivered under a faster schedule and with higher quality through the utilization of APDM.
ContributorsFeghaly, Jeffrey (Author) / El Asmar, Mounir (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2018