Matching Items (47)
131887-Thumbnail Image.png
Description
Prior studies of Mourning Doves have observed no changed in glucose in response to either a high fat “chow” diet or a white bread diet. In the current feeding study, we fed doves an urban diet, high in carbohydrates, fat, and sodium, which is representative of typical American nutrition accessible

Prior studies of Mourning Doves have observed no changed in glucose in response to either a high fat “chow” diet or a white bread diet. In the current feeding study, we fed doves an urban diet, high in carbohydrates, fat, and sodium, which is representative of typical American nutrition accessible to the avian population in an urbanized environment. Based on studies of other avian species that examined the effects of an urban diet on physiology, I hypothesized that doves fed an urban diet would have increased plasma glucose and sodium, which would promote an increase in plasma osmolality. This hypothesis was based on preliminary data that found birds fed an urban diet developed impaired vasodilation compared to seed diet control birds. Therefore, differences in plasma glucose, sodium, and osmolality were examined as increases may contribute to the impairment. Adult doves of both sexes were captured on the Arizona State University, Tempe campus. Doves were placed in two dietary groups: an urban diet consisting of a 50/50 ratio of French fries and nutritionally-balanced bird seed (n=7) and a control group of only the seed diet (n=6). Following the four-week diets, birds were euthanized, and cardiac plasma samples were collected from birds to measure glucose, sodium, and osmolality. There were no significant differences between the two study groups in plasma glucose concentration (p=0.445), sodium concentration (p=0.731), or osmolality (p=0.692). Sodium concentrations were signficantly more variable in birds consuming a seed diet than those that were provided the mixed French fry and seed diet (p=0.014). These results suggest that glucose, sodium, and osmolality likely do not contribute to the altered vasodilation of doves fed an urban diet and that such a diet may not be as detrimental to the doves health given their phenotypic flexibility.
ContributorsKayata, Lana (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Basile, Anthony (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
168785-Thumbnail Image.png
Description
Birds have the highest blood glucose concentrations of all vertebrates. Meanwhile, birds do not develop the same physiological complications (e.g., increased oxidative stress and glycation) that mammals do when blood glucose is elevated (i.e., diabetes). Therefore, birds may serve as a negative model animal for hyperglycemic complications. The physiological reason

Birds have the highest blood glucose concentrations of all vertebrates. Meanwhile, birds do not develop the same physiological complications (e.g., increased oxidative stress and glycation) that mammals do when blood glucose is elevated (i.e., diabetes). Therefore, birds may serve as a negative model animal for hyperglycemic complications. The physiological reason for high blood glucose in birds remains largely unknown although several unique characteristics of birds may contribute including a lack of the insulin responsive glucose transport protein, relatively high glucagon concentrations, as well as reliance on fatty acids to sustain the high energetic demands of flight. In breaking down triglycerides for energy, glycerol is liberated, which can be converted to glucose through a process called gluconeogenesis. In addition, the extent to which birds maintain homeostatic control over blood glucose in response to extreme dietary interventions remains unclear and few dietary studies have been conducted in wild-caught birds. Using Mourning Doves (Zenaida macroura) as a model organism, this dissertation tests four hypotheses: 1) Gluconeogenesis contributes to high circulating blood glucose concentration; 2-4) similar to mammals, a fully refined carbohydrate (i.e., white bread diet); a high saturated fat diet (60% kcal from fat); and an urban-type diet comprised of a 1:1 ratio of French fries and birds seed will increase blood glucose compared to a nutritionally-balanced diet after a four-week duration. Contrary to the hypothesis, 150 mg/kg Metformin (which inhibits glycerol gluconeogenesis) increased blood glucose, but 300 mg/kg resulted in no change. However, when 2.5 mg/kg of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB; a glycogenolysis inhibitor) was given with 150 mg/kg of Metformin, blood glucose was not different from the control (50 ul water). This suggests that glycerol gluconeogenesis does not contribute to the naturally high blood glucose in birds and that a low dose of Metformin may increase the rate of glycogenolysis. In addition, all three experimental diets failed to alter blood glucose compared to control diets. Collectively, these results suggest that, in addition to a negative model for diabetes complications, birds can also serve a negative model for diet-induced hyperglycemia. Future research should further examine dietary manipulation in birds while controlling for and examining different variables (e.g., species, sex, duration, diet composition, urbanization).
ContributorsBasile, Anthony Joseph (Author) / Sweazea, Karen L (Thesis advisor) / Deviche, Pierre (Committee member) / Johnston, Carol (Committee member) / Trumble, Ben (Committee member) / Parrington, Diane J (Committee member) / Arizona State University (Publisher)
Created2022
168759-Thumbnail Image.png
Description
Adsorption of fibrinogen on various surfaces, including biomaterials, dramatically reduces the adhesion of platelets and leukocytes. The mechanism by which fibrinogen renders surfaces non-adhesive is its surface-induced self-assembly leading to the formation of a nanoscale multilayer matrix. Under the applied tensile force exerted by cellular integrins, the fibrinogen matrix extends

Adsorption of fibrinogen on various surfaces, including biomaterials, dramatically reduces the adhesion of platelets and leukocytes. The mechanism by which fibrinogen renders surfaces non-adhesive is its surface-induced self-assembly leading to the formation of a nanoscale multilayer matrix. Under the applied tensile force exerted by cellular integrins, the fibrinogen matrix extends as a result of the separation of layers which prevents the transduction of strong mechanical forces, resulting in weak intracellular signaling and feeble cell adhesion. Furthermore, upon detachment of adherent cells, a weak association between fibrinogen molecules in the superficial layers of the matrix allows integrins to pull fibrinogen molecules out of the matrix. Whether the latter mechanism contributes to the anti-adhesive mechanism under the flow is unclear. In the present study, using several experimental flow systems, it has been demonstrated that various blood cells as well as model HEK293 cells expressing the fibrinogen receptors, were able to remove fibrinogen molecules from the matrix in a time- and cell concentration-dependent manner. In contrast, insignificant fibrinogen dissociation occurred in a cell-free buffer, and crosslinking fibrinogen matrix significantly reduced cell-mediated dissociation of adsorbed fibrinogen. Surprisingly, cellular integrins contributed minimally to fibrinogen dissociation since function-blocking anti-integrin antibodies did not significantly inhibit this process. In addition, erythrocytes that are not known to express functional fibrinogen receptors and naked liposomes caused fibrinogen dissociation, suggesting that the removal of fibrinogen from the matrix may be caused by nonspecific low-affinity interactions of cells with the fibrinogen matrix. These results indicate that the peeling effect exerted by flowing cells upon their contact with the fibrinogen matrix is involved in the anti-adhesive mechanism.
ContributorsMursalimov, Aibek (Author) / Ugarova, Tatiana (Thesis advisor) / Chandler, Douglas (Committee member) / Podolnikova, Nataly (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2022
154222-Thumbnail Image.png
Description
Coccidioidomycosis (valley fever) is caused by inhalation of arthrospores from soil-dwelling fungi, Coccidioides immitis and C. posadasii. This dimorphic fungus and disease are endemic to the southwestern United States, central valley in California and Mexico. The Genome of Coccidioidies has been sequenced but proteomic studies are absent. To address this

Coccidioidomycosis (valley fever) is caused by inhalation of arthrospores from soil-dwelling fungi, Coccidioides immitis and C. posadasii. This dimorphic fungus and disease are endemic to the southwestern United States, central valley in California and Mexico. The Genome of Coccidioidies has been sequenced but proteomic studies are absent. To address this gap in knowledge, we generated proteome of Spherulin (lysate of Spherule phase) using LC-MS/MS and identified over 1300 proteins. We also investigated lectin reactivity to spherules in human lung tissue based on the hypothesis that coccidioidal glycosylation is different from mammalian glycosylation, and therefore certain lectins would have differential binding properties to fungal glycoproteins. Lectin-based immunohistochemistry using formalin-fixed paraffin-embedded human lung tissue from human coccidioidomycosis patients demonstrated that Griffonia simplificonia lectin II (GSL II) and succinylated wheat germ agglutinin (sWGA) bound specifically to endospores and spherules in infected lungs, but not to adjacent human tissue. GSL II and sWGA-lectin affinity chromatography using Spherulin, followed by LC-MS/MS was used to isolate and identify 195 proteins that bind to GSL-II lectin and 224 proteins that bind to sWGA lectin. This is the first report that GSL II and sWGA lectins bind specifically to Coccidioides endospores and spherules in infected human tissues. Our list of proteins from spherulin (whole and GSL-II and sWGA binding fraction) may also serve as a Coccidioidal Rosetta-Stone generated from mass spectra to identify proteins from 3 different databases: The Broad Institutes Coccidioides Genomes project, RefSeq and SwissProt. This also serves as a viable avenue for proteomics based diagnostic test development for valley fever. Using lectin chromatography and LC MS/MS, we identified over 100 proteins in plasma of two patients and six proteins in urine of one patient. We also identified over eighty fungal proteins isolated from spherules from biopsied infected lung tissue. This, to the best of our knowledge, is the first such example of detecting coccidioidal proteins in patient blood and urine and provides a foundation for development of a proteomics based diagnostic test as opposed to presently available but unreliable serologic diagnostic tests reliant on an antibody response in the host.
ContributorsKaushal, Setu (Author) / Lake, Douglas (Thesis advisor) / Magee, Dewey Mitchell (Committee member) / Chandler, Douglas (Committee member) / Rawls, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015
158687-Thumbnail Image.png
Description
Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little

Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little is known about the ecology of hibernating bats in the southwest, which can help predict how these populations may respond to the fungus. My study investigated hibernating bats during two winters (2018-2019/2019-2020) at three caves in northern Arizona to: (1) describe diversity and abundance of hibernating bats using visual internal surveys and photographic documentation, (2) determine the duration of hibernation by recording bat echolocation call sequences outside caves and recording bat activity in caves using visual inspection, and (3) describe environmental conditions where hibernating bats are roosting. Adjacent to bats, I collected temperature and relative humidity, which I converted into absolute humidity. I documented hibernation status (i.e. active vs. not active) and roosting body position (i.e. open, partially hidden, and hidden). Between September 2018 and April 2019, 246 bat observations were recorded across the three caves. The majority of bats were identified as Myotis spp. (45.9\%, n=113), followed by Corynorhinus townsendii (45.5\%, n=112), Parastrellus hesperus (4.8\%, n=12), Eptesicus fuscus (3.6\%, n=9). Between September 2019 and April 2020, I documented a total of 361 bat observations across the three caves. C. townsendii was most prevalent (52.9\%, n=191), followed by the category P. hesperus/Myotis spp. (25.7\%, n=93), Myotis spp. (12.4\%, n=45), P. Hesperus (4.4\%, n=16), E. fuscus (3.6\%, n=13) and Unknown (0.8\%, n=3). Average conditions adjacent to bats were, temperature=12.5ºC, relative humidity=53\%, and absolute humidity=4.9 g/kg. Hibernating bats were never observed in large clusters and the maximum hibernating population size was 24, suggesting low risk for pathogen transmission among bats. Hibernation lasted approximately 120 days, with minimal activity documented inside and outside caves. Hibernating bats in northern Arizona may be at low risk for white-nose syndrome based on population size, hibernation length, roosting behavior, and absolute humidity, but other variables (e.g. temperature) indicate the potential for white-nose syndrome impacts on these populations.
ContributorsMaldonado Perez, Nubia Erandi (Author) / Moore, Marianne S (Thesis advisor) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2020
161631-Thumbnail Image.png
Description
Macrophage fusion resulting multinucleated giant cells (MGCs) formation is associated with numerous chronic inflammatory diseases including the foreign body reaction to implanted biomaterials. Despite long-standing predictions, there have been attempts to use live-cell imaging to investigate the morphological features initiating macrophage fusion because macrophages do not fuse on clean glass

Macrophage fusion resulting multinucleated giant cells (MGCs) formation is associated with numerous chronic inflammatory diseases including the foreign body reaction to implanted biomaterials. Despite long-standing predictions, there have been attempts to use live-cell imaging to investigate the morphological features initiating macrophage fusion because macrophages do not fuse on clean glass required for most imaging techniques. Consequently, the mechanisms of macrophage fusion remain poorly understood. The goal of this research project was to characterize the early and late stages of macrophage multinucleation using fusogenic optical quality substrate. Live-cell imaging with phase-contrast and lattice-light sheet microscopy revealed that an actin-based protrusion initiates macrophage fusion. WASpdeficient macrophages and macrophages isolated from myeloid cell-specific Cdc42-/- mice fused at very low rates. In addition, inhibiting the Arp2/3 complex impaired both the formation of podosomes and macrophage fusion. Analyses of the late stages of macrophage multinucleation on biomaterials implanted into mice revealed novel actin-based zipper-like structures (ZLSs) formed at contact sites between MGCs. The model system that was developed for the induction of ZLSs in vitro allowed for the characterization of protein composition using confocal and super-resolution microscopy. Live-cell imaging demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. It was further found that E-cadherin and nectin-2 are involved in ZLS formation by bridging the plasma membranes together. ii Macrophage fusion on implanted biomaterials inherently involves their adhesion to the implant surface. While biomaterials rapidly acquire a layer of host proteins, a biological substrate that is required for macrophage fusion is unknown. It was shown that mice with fibrinogen deficiency as well as mice expressing fibrinogen incapable of fibrin polymerization displayed a dramatic reduction of macrophage fusion on biomaterials. Furthermore, these mice were protected from the formation of the dense collagenous capsule enveloping the implant. It was also found that the main cell type responsible for the deposition of collagen in the capsule were mononuclear macrophages but not myofibroblasts. Together, these findings reveal a critical role of the actin cytoskeleton in macrophage fusion and identify potential targets to reduce the drawbacks of macrophage fusion on implanted biomaterials.
ContributorsBalabiyev, Arnat (Author) / Ugarova, Tatiana (Thesis advisor) / Roberson, Robert (Committee member) / Chandler, Douglas (Committee member) / Baluch, Page (Committee member) / Arizona State University (Publisher)
Created2021
161999-Thumbnail Image.png
Description
Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with

Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with regard to carotenoid allocation towards life-history traits, but direct quantification of variation in carotenoid distribution on a whole-organism scale has yet to be done. Additionally, while we know that scavenger receptor B1 (SCARB1) is important for carotenoid absorption in birds, little is known about the factors that predict how SCARB1 is expressed in wild populations. For my dissertation, I first reviewed challenges associated with statistically analyzing tissue distributions of nutrients (nutrient profiles) and tested how tissue carotenoid distributions (carotenoid profiles) varied by sex, season, health state, and coloration in two bird species, house finches (Haemorhous mexicanus) and zebra finches (Taeniopygia guttata). Then, I investigated the relationship between dietary carotenoid availability, relative expression of SCARB1, and extent of carotenoid-based coloration in a comparative study of wood-warblers (Parulidae). In my review of studies analyzing nutrient profiles, I found that multivariate analyses were the most common, but studies rarely reported intercorrelations among nutrient types. In house finches, all tissue carotenoid profiles varied by sex, season, and coloration. For example, males during autumn (molt) had higher concentrations of 3-hydroxyechinenone (the major red carotenoid in sexually attractive male feathers) in most but not all tissues compared to other season and sex combinations. However, the relationship between color and carotenoid profiles depended on the color metric. In zebra finches, only muscle and spleen carotenoid profiles varied between immune-challenged and control birds. In wood-warblers, I found that capacity to absorb carotenoids was positively correlated with the evolution of carotenoid-based coloration but negatively associated with liver carotenoid accumulation. Altogether, my dissertation illustrates (a) the context-dependence of tissue carotenoid profile variation, (b) that carotenoid-based integumentary coloration is a reflection of tissue carotenoid profiles, and (c) that digestive physiology (e.g., carotenoid absorption) is an important consideration in the study of diet and coloration in wild birds.
ContributorsWebb, Emily (Author) / McGraw, Kevin J (Thesis advisor) / Deviche, Pierre (Committee member) / Martins, Emilia (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2021