Matching Items (138)
152019-Thumbnail Image.png
Description
In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data.
ContributorsWang, Xinyang, Ph.D (Author) / Shovkovy, Igor (Thesis advisor) / Belitsky, Andrei (Committee member) / Easson, Damien (Committee member) / Peng, Xihong (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013
152067-Thumbnail Image.png
Description
A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.
ContributorsMoradi, Ali (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
151944-Thumbnail Image.png
Description
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom-

The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
ContributorsGhods, Sina (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2013
151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013
151369-Thumbnail Image.png
Description
This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space

This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.
ContributorsSamantray, Prasant (Author) / Parikh, Maulik (Thesis advisor) / Davies, Paul (Committee member) / Vachaspati, Tanmay (Committee member) / Easson, Damien (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2012
151412-Thumbnail Image.png
Description
The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09 ± 0.32) × 10-3 in the energy range of 15 keV to 340 keV. This was achieved by prompt coincident detection of an electron and photon, in delayed coincidence with a proton. The photons were detected by using a single bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode. This thesis deals with the follow-up experiment, RDK II, to measure the branching ratio at the level of approximately 1% and the energy spectrum at the level of a few percent. The most significant improvement of RDK II is the use of a photon detector with about an order of magnitude greater solid angle coverage than RDK I. In addition, the detectable energy range has been extended down to approximately 250 eV and up to the endpoint energy of 782 keV. This dissertation presents an overview of the apparatus, development of a new data analysis technique for radiative decay, and results for the ratio of electron-proton-photon coincident Repg to electron-proton coincident Rep events.
ContributorsO'Neill, Benjamin (Author) / Alarcon, Ricardo (Thesis advisor) / Drucker, Jeffery (Committee member) / Lebed, Richard (Committee member) / Comfort, Joseph (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2012
151415-Thumbnail Image.png
Description
In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) groups following the plasma exposure. Increased temperature (380 °C) processing leads to a reduction of the hydroxyl group formation compared to ambient temperature processes, resulting in reduced changes of the dielectric constant. For CMP Cu surfaces, the carbonate contamination was removed by an H2 plasma process at elevated temperature while the C-C and C-H contamination was removed by an N2 plasma process at elevated temperature. The second part of this study examined oxide stability and cleaning of Ru surfaces as well as consequent Cu film thermal stability with the Ru layers. The ~2 monolayer native Ru oxide was reduced after H-plasma processing. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru ii interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated in the third part. The barrier properties and interfacial stability have been evaluated by Rutherford backscattering spectrometry (RBS). Atomic force microscopy (AFM) was used to measure the surfaces before and after annealing, and all the surfaces are relatively smooth excluding islanding or de-wetting phenomena as a cause of the instability. The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS indicates that during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident than Ti. Among the three adhesion layer candidates, Ru shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.
ContributorsLiu, Xin (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Smith, David (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2012
151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
151543-Thumbnail Image.png
Description
The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases

The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases since 1995 with CMIP5 being the state of the art. In parallel, an organized effort to consolidate all observational data in the past century culminates in the creation of several "reanalysis" datasets that are considered the closest representation of the true observation. This study compared the climate variability and trend in the climate model simulations and observations on the timescales ranging from interannual to centennial. The analysis focused on the dynamic climate quantity of zonal-mean zonal wind and global atmospheric angular momentum (AAM), and incorporated multiple datasets from reanalysis and the most recent CMIP3 and CMIP5 archives. For the observation, the validation of AAM by the length-of-day (LOD) and the intercomparison of AAM revealed a good agreement among reanalyses on the interannual and the decadal-to-interdecadal timescales, respectively. But the most significant discrepancies among them are in the long-term mean and long-term trend. For the simulations, the CMIP5 models produced a significantly smaller bias and a narrower ensemble spread of the climatology and trend in the 20th century for AAM compared to CMIP3, while CMIP3 and CMIP5 simulations consistently produced a positive trend for the 20th and 21st century. Both CMIP3 and CMIP5 models produced a wide range of the magnitudes of decadal and interdecadal variability of wind component of AAM (MR) compared to observation. The ensemble means of CMIP3 and CMIP5 are not statistically distinguishable for either the 20th- or 21st-century runs. The in-house atmospheric general circulation model (AGCM) simulations forced by the sea surface temperature (SST) taken from the CMIP5 simulations as lower boundary conditions were carried out. The zonal wind and MR in the CMIP5 simulations are well simulated in the AGCM simulations. This confirmed SST as an important mediator in regulating the global atmospheric changes due to GHG effect.
ContributorsPaek, Houk (Author) / Huang, Huei-Ping (Thesis advisor) / Adrian, Ronald (Committee member) / Wang, Zhihua (Committee member) / Anderson, James (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013