Matching Items (57)
Filtering by

Clear all filters

155402-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme that plays important roles in neuronal cells including mediating actin organization and dendritic spine morphogenesis. The ROCK inhibitor Fasudil has been shown to increase learning and working memory in aged rats, but another ROCK inhibitor, Y27632, was shown to impair learning and memory. I am interested in exploring how these, and other ROCK inhibitors, may be acting mechanistically to result in very different outcomes in treated animals.

Preliminary research on thirteen different ROCK inhibitors provides evidence that while Fasudil and a novel ROCK inhibitor, T343, decrease tau phosphorylation in vitro, Y27632 increases tau phosphorylation at a low dose and decreases at a high dose. Meanwhile, novel ROCK inhibitor T299 increases tau phosphorylation at a high dosage.

Further, an in vivo study using triple transgenic AD mice provides evidence that Fasudil improves reference memory and fear memory in both transgenic and wild-type mice, while Y27632 impairs reference memory in transgenic mice. Fasudil also decreases tau phosphorylation and Aβ in vivo, while Y27632 significantly increases the p-tau to total tau ratio.
ContributorsTurk, Mari (Author) / Huentelman, Matt (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Jensen, Kendall (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2017
155427-Thumbnail Image.png
Description
An in vitro model of Alzheimer’s disease (AD) is required to study the poorly understood molecular mechanisms involved in the familial and sporadic forms of the disease. Animal models have previously proven to be useful in studying familial Alzheimer’s disease (AD) by the introduction of AD related mutations in the

An in vitro model of Alzheimer’s disease (AD) is required to study the poorly understood molecular mechanisms involved in the familial and sporadic forms of the disease. Animal models have previously proven to be useful in studying familial Alzheimer’s disease (AD) by the introduction of AD related mutations in the animal genome and by the overexpression of AD related proteins. The genetics of sporadic Alzheimer’s is however too complex to model in an animal model. More recently, AD human induced pluripotent stem cells (hiPSCs) have been used to study the disease in a dish. However, AD hiPSC derived neurons do not faithfully reflect all the molecular characteristics and phenotypes observed in the aged cells with neurodegenerative disease. The truncated form of nuclear protein Lamin-A, progerin, has been implicated in premature aging and is found in increasing concentrations as normal cells age. We hypothesized that by overexpressing progerin, we can cause cells to ‘age’ and display the neurodegenerative effects observed with aging in both diseased and normal cells. To answer this hypothesis, we first generated a retrovirus that allows for the overexpression of progerin in AD and non-demented control (NDC) hiPSC derived neural progenitor cells(NPCs). Subsequently, we generated a pure population of hNPCs that overexpress progerin and wild type lamin. Finally, we analyzed the presence of various age related phenotypes such as abnormal nuclear structure and the loss of nuclear lamina associated proteins to characterize ‘aging’ in these cells.
ContributorsRaman, Sreedevi (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017
135698-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a

Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a predictive in silco model using diffusion and autocrine/paracrine signaling specific to stromal cell derived factor-1α (SDF-1α) gradient formation after TBI and compare this model with in vivo experimental data. A COMSOL model using Fickian diffusion and autocrine/paracrine reaction terms was generated to predict the gradient formation observed in vivo at three physiologically relevant time points (1, 3, and 7 days). In vivo data was gathered and analyzed via immunohistochemistry and MATLAB. The spatial distribution of SDF-1α concentration in vivo more consistently demonstrated patterns similar to the in silico model dependent on both diffusion and autocrine/paracrine reaction terms rather than diffusion alone. The temporal distribution of these same results demonstrated degradation of SDF-1α at too rapid a rate, compared to the in vivo results. To account for differences in behavior observed in vivo, reaction terms and constants of 1st-order reaction rates must be modulated to better reflect the results observed in vivo. These results from both the in silico model and in vivo data support the hypothesis that SDF-1α gradient formation after TBI depends on more than diffusion alone. Future work will focus on improving the model with constants that are specific to SDF-1α as well as testing methods to better control the degradation of SDF-1α.
ContributorsFreeman, Sabrina Louise (Author) / Stabenfeldt, Sarah (Thesis director) / Caplan, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135506-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade,

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade, gliosis, and astrocyte activation surrounding the injury lesion, and no current treatments exist to alleviate these underlying pathologies. In order to mitigate the negative inflammatory effects of the secondary injury, we created a hydrogel comprised of hyaluronic acid (HA) and laminin, and we hypothesized that the anti-inflammatory properties of HA will decrease astrocyte activation and inflammation after TBI. C57/BL6 mice were subjected to mild-to-moderate CCI. Three days following injury, mice were treated with injection of vehicle or HA-Laminin hydrogel. Mice were sacrificed at three and seven days post injection and analyzed for astrocyte and inflammatory responses. In mice treated with vehicle injections, astrocyte activation was significantly increased at three days post-transplantation in the injured cortex and injury lesion. However, mice treated with the HA-Laminin hydrogel experienced significantly reduced acute astrocyte activation at the injury site three days post transplantation. Interestingly, there were no significant differences in astrocyte activation at seven days post treatment in either group. Although the microglial and macrophage response remains to be investigated, our data suggest that the HA-Laminin hydrogel demonstrates potential for TBI therapeutics targeting inflammation, including acute modulation of the astrocyte, microglia, and macrophage response to TBI.
ContributorsGoddery, Emma Nicole (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135280-Thumbnail Image.png
Description
Chronic stress has been linked as a probable contributor to a number of health problems that plague the world today. Obesity, cardiovascular disease, depression, and osteoporosis are all common health risks believed to be exacerbated by stress. While it is nether realistic nor desirable to completely eliminate stress in an

Chronic stress has been linked as a probable contributor to a number of health problems that plague the world today. Obesity, cardiovascular disease, depression, and osteoporosis are all common health risks believed to be exacerbated by stress. While it is nether realistic nor desirable to completely eliminate stress in an individual, proper stress management is important to a healthy lifestyle. Homeostasis is the primary mechanism by which stress, and the stress response, should be analyzed. Environmental factors known as stressors elicit responses from the body, which can be measured in terms of duration and magnitude. These two factors determine the homeostatic response from the body. This thesis proposes the study of heart rate variability (HRV) to measure the response of the autonomic nervous system through time domain analysis (the length of interbeat intervals) and frequency domain analysis (the differences between the lengths of consecutive interbeat intervals). Even with many possible problems, this data still represents valuable proof of concept that HRV analysis may be of use in identifying stress.
ContributorsUchimura, Kevin (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
148068-Thumbnail Image.png
Description

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell transplantation, as neural stem cells improve neurological function. While promising, neural stem cell transplantation presents challenges due to a relatively low survival rate post-implantation and issues with determining the optimal method of transplantation. Shear-thinning hydrogels are a type of hydrogel whose linkages break when under shear stress, exhibiting viscous flow, but reform and recover upon relaxation. Such properties allow them to be easily injected for minimally invasive delivery, while also shielding encapsulated cells from high shear forces, which would normally degrade the function and viability of such cells. As such, it is salient to research whether shear-thinning hydrogels are feasible candidates in neural cell transplantation applications for neuroregenerative medicine. In this honors thesis, shear-thinning hydrogels were formed through guest-host interactions of adamantane modified HA (guest ad-HA) and beta-cyclodextrin modified HA (host CD-HA). The purpose of the study was to characterize the injection force profile of different weight percentages of the HA shear-thinning hydrogel. The break force and average glide force were also compared between the differing weight percentages. By understanding the force exerted on the hydrogel when being injected, we could characterize how neural cells may respond to encapsulation and injection within HA shear-thinning hydrogels. We identified that 5% weight HA hydrogel required greater injection force than 4% weight HA hydrogel to be fully delivered. Such contexts are valuable, as this implies that higher weight percentage gels impart higher shear forces on encapsulated cells than lower weight gels. Further study is required to optimize our injection force system’s sensitivity and to investigate if cell encapsulation increases the force required for injection.

ContributorsZhang, Irene (Author) / Stabenfeldt, Sarah (Thesis director) / Holloway, Julianne (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147979-Thumbnail Image.png
Description

Traumatic brain injury involves a primary mechanical injury that is followed by a secondary<br/>inflammatory cascade. The inflammatory cascade in the CNS releases cytokines which are<br/>associated with leukocytosis and a systemic immune response. Acute changes to peripheral<br/>immune cell populations post-TBI include a 4.5-fold increase of neutrophils 3 hours post-injury,<br/>and 2.7-fold or

Traumatic brain injury involves a primary mechanical injury that is followed by a secondary<br/>inflammatory cascade. The inflammatory cascade in the CNS releases cytokines which are<br/>associated with leukocytosis and a systemic immune response. Acute changes to peripheral<br/>immune cell populations post-TBI include a 4.5-fold increase of neutrophils 3 hours post-injury,<br/>and 2.7-fold or higher increase of monocytes 24 hours post-injury. Flow Cytometry is a<br/>technique that integrates fluidics, optics, and electronics to characterize cells based on their light<br/>scatter and antigen expression via monoclonal antibodies conjugated to fluorochromes. Flow<br/>cytometry is a valuable tool in cell characterization however the standard technique for data<br/>analysis, manual gating, is associated with inefficiency, subjectivity, and irreproducibility.<br/>Unsupervised analysis that uses algorithms packaged as plug-ins for flow cytometry analysis<br/>software has been discussed as a solution to the limits of manual gating and as an alternative<br/>method of data visualization and exploration. This investigation evaluated the use of tSNE<br/>(dimensionality reduction algorithm) and FlowSOM (population clustering algorithm)<br/>unsupervised flow cytometry analysis of immune cell population changes in female mice that<br/>have been exposed to a LPS-induced systemic inflammatory challenge, results were compared to<br/>those of manual gating. Flow cytometry data was obtained from blood samples taken prior to and<br/>24 hours after LPS injection. Unsupervised analysis was able to identify populations of<br/>neutrophils and pro-inflammatory/anti-inflammatory monocytes, it also identified several more<br/>populations however further inquiry with a more specific fluorescent panel would be required to<br/>establish the specificity and validity of these populations. Unsupervised analysis with tSNE and<br/>FlowSOM demonstrated the efficient and intuitive nature of the technique, however it also<br/>illustrated the importance of the investigator in preparing data and modulating plug-in settings.

ContributorsDudic, Ahmed (Author) / Stabenfeldt, Sarah (Thesis director) / Lifshitz, Jonathan (Committee member) / Rojas, Luisa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or diagnostic agents, either on the surface or within the core. NP size is an important characteristic as it directly impacts clearance and where the particles can travel and bind in the body. To that end, the typical target size for NPs is 30-200 nm for the majority of applications. Fabricating NPs using the typical techniques such as drop emulsion, microfluidics, or traditional nanoprecipitation can be expensive and may not yield the appropriate particle size. Therefore, a need has emerged for low-cost fabrication methods that allow customization of NP physical characteristics with high reproducibility. In this study we manufactured a low-cost (<$210), open-source syringe pump that can be used in nanoprecipitation. A design of experiments was utilized to find the relationship between the independent variables: polymer concentration (mg/mL), agitation rate of aqueous solution (rpm), and injection rate of the polymer solution (mL/min) and the dependent variables: size (nm), zeta potential, and polydispersity index (PDI). The quarter factorial design consisted of 4 experiments, each of which was manufactured in batches of three. Each sample of each batch was measured three times via dynamic light scattering. The particles were made with PLLA-mPEG dissolved in a 50% dichloromethane and 50% acetone solution. The polymer solution was dispensed into the aqueous solution containing 0.3% polyvinyl alcohol (PVA). Data suggests that none of the factors had a statistically significant effect on NP size. However, all interactions and relationships showed that there was a negative correlation between the above defined input parameters and the NP size. The NP sizes ranged from 276.144 ± 14.710 nm at the largest to 185.611 ± 15.634 nm at the smallest. In conclusion, the low-cost syringe pump nanoprecipitation method can achieve small sizes like the ones reported with drop emulsion or microfluidics. While there are trends suggesting predictable tuning of physical characteristics, significant control over the customization has not yet been achieved.

ContributorsDalal, Dhrasti (Author) / Stabenfeldt, Sarah (Thesis director) / Wang, Kuei-Chun (Committee member) / Flores-Prieto, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

Current sideline concussion assessment tools are inaccurate and biased leading to undiagnosed concussions and possibly a second, more severe concussion. This study evaluated the effects of different surface types on postural stability using the Lockhart Monitor iPhone application in order to validate its potential use as a data-driven sideline concussion

Current sideline concussion assessment tools are inaccurate and biased leading to undiagnosed concussions and possibly a second, more severe concussion. This study evaluated the effects of different surface types on postural stability using the Lockhart Monitor iPhone application in order to validate its potential use as a data-driven sideline concussion assessment tool. Participants had three components of their postural sway recorded in 30 and 60-second trials on three different surface types, tile, turf, and natural grass, with eyes open and closed. The statistical analysis found that there was a significant difference between surface types for the sway area (p = 0.0268), but there was no difference for the sway path and velocity. These results call for further research to be conducted on the impact of surface types and the use of the Lockhart Monitor as a sideline concussion assessment tool with larger sample sizes and improved methodologies.

ContributorsDeacon, Kyle (Author) / McDonald, Mark (Co-author) / Lockhart, Thurmon (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05