Matching Items (2)
130352-Thumbnail Image.png
Description

Background:
Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green

Background:
Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency.

Results:
77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions.

Conclusions:
Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency.

Created2012-04-13
130406-Thumbnail Image.png
Description
Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect

Titanium dioxide (TiO2) is widely used for photocatalysis and solar cell applications, and the electronic structure of bulk TiO2 is well understood. However, the surface structure of nanoparticulate TiO2, which has a key role in properties such as solubility and catalytic activity, still remains controversial. Detailed understanding of surface defect structures may help explain reactivity and overall materials performance in a wide range of applications. In this work we address the solubility problem and surface defects control on TiO2 nanoparticles. We report the synthesis and characterization of ∼4 nm TiO2 anatase spherical nanoparticles that are soluble and stable in a wide range of organic solvents and water. By controlling the temperature during the synthesis, we are able to tailor the density of defect states on the surface of the TiO2 nanoparticles without affecting parameters such as size, shape, core crystallinity, and solubility. The morphology of both kinds of nanoparticles was determined by TEM. EPR experiments were used to characterize the surface defects, and transient absorption measurements demonstrate the influence of the TiO2 defect states on photoinduced electron transfer dynamics.
Created2014-11-13