Matching Items (13)

Coupled Human and Natural Systems Research: A Transdisciplinary Approach for Sustainability Science

Description

In the face of the world's most pressing sustainability challenges, such as climate change, ecosystem degradation, and loss of biodiversity, the following questions must be explored: Why are these situation

In the face of the world's most pressing sustainability challenges, such as climate change, ecosystem degradation, and loss of biodiversity, the following questions must be explored: Why are these situation occurring? How can we understand their complexity? How can we research these challenges to mitigate negative outcomes? This thesis investigates the relationships between people and nature through coupled human and natural systems, or CHANS, and argues for a transdisciplinary research approach for sustainability science. The following questions and topics are discussed: 1. The Complexity of Sustainability and Implications for Traditional Research Approaches 2. Coupled Human and Natural Systems Research 3. What is Transdisciplinary Research, and How Does it Relate to the Living With Locusts Team's Coupled Human and Natural Systems Research? This thesis uses the case of a team researching international locust plagues to argue for this approach. The team's project is titled "Living With Locusts" and is directed by Arianne Cease of Arizona State University's School of Sustainability.

Contributors

Agent

Created

Date Created
  • 2016-12

135424-Thumbnail Image.png

Peeing in the Pool: how aquatic insect excretion reflects and affects nutrient recycling in two desert streams

Description

Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced

Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced by other environmental factors that can determine total excretion-derived N, P, and N:P. Garden Canyon and Ramsey Canyon, two streams in the Huachuca Mountain Range in Southern Arizona, USA, host similar insect communities, but only Garden Canyon experiences a seasonal P limitation due to the co-precipitation of phosphate with calcium carbonate (CaCO3) in its benthic substrate (Corman et al. 2015). I performed an analysis of excretion rates of aquatic insects living in these streams to test if the P limitation is reflected in rates that insects recycle nutrients. A lower mean N:P of all insect excretion rates in Garden provides evidence for an ecosystem-scale effect, though the differences in N:P of excretion rates by individual taxa between streams did not support the hypothesis. Attributing excretion rates to actual insect densities in three years reveals that natural-occurring fluctuations in excretion rates can operate on the same magnitude as fluctuations in abundances and causes steep differences in nutrient conversion between streams. Lastly, I found that since these streams support immense insect diversity, they receive excretion-derived N and P from taxa in many different functional feeding groups, which illustrates ecosystem resilience and uniqueness.

Contributors

Agent

Created

Date Created
  • 2016-05

133586-Thumbnail Image.png

The Effects of Nitrogen Fertilization of Wheatgrass on the South American Locust (Schistocerca cancellata)

Description

Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is

Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several control and management practices, including biological control, have been implemented in these countries in the past to control the locusts and reduce their impact on crop and vegetation, however, effective long-term control and management practices will require a detail understanding of how the predominant locust species in this region responds to resource variation. Research has shown that there is strong evidence that locusts, and many other organisms, will actively balance dietary macronutrients (protein, carbohydrates, and lipids) to optimize growth, survival, and/or reproduction. A study by Cease et. al, 2017, on the dietary preferences of the Mongolian locust (Oedaleus asiaticus) showed that it prefers diets that are high in carbohydrates over diets that are high in protein, in this case locusts self-selected a 1:2 ratio of protein:carbohydrate. This and many other studies provide vital insight into the nutritional and feeding preferences of these locust species but the effects that this difference in protein: carbohydrate preferences has on growth, egg production, flight potential, and survival has yet to be fully explored, hence, this study investigates the effects that nitrogen fertilization of wheatgrass will have on the growth, egg production, survival, and flight muscle mass of the South American locust in a controlled, laboratory environment.

Contributors

Agent

Created

Date Created
  • 2018-05

147549-Thumbnail Image.png

What drives host plant choice? Linking Australian plague locust (Chortoicetes terminifera) host plant preference to water content, leaf thickness, and plant nutrient content

Description

Host plant choice by herbivorous insects can be driven by a variety of factors including plant nutrient composition and mechanical properties. In this study, I investigated the role of plant

Host plant choice by herbivorous insects can be driven by a variety of factors including plant nutrient composition and mechanical properties. In this study, I investigated the role of plant protein and carbohydrate composition, water content, and leaf thickness on plant preference for the Australian Plague Locust (Chortoicetes terminifera). For this, I used four economically important cereal crop species: barley Hordeum vulgare, wheat Triticum aestivum L., rye Secale cereale, and corn Zea mays. Using a full factorial design, I gave the choice to the locusts between two plant species then I measured 1) visual preference by pairing, 2) surface area consumed, and 3) dry mass consumed. For each leaf, I measured protein content, carbohydrate content, foliar wet mass, and Specific Leaf Area (SLA, a measure of plant thickness). I found plant nutrient content was not a good predictor of host plant choice in the short term, however, leaf thickness had a significant relationship with dry amount of leaf consumed and defoliation. Overall locusts preferred plants that were thinner. I discuss these results in light of our current knowledge of the nutritional ecology of this important cereal crop pest.

Contributors

Agent

Created

Date Created
  • 2021-05

148119-Thumbnail Image.png

The Metagenomic Analysis of the Gut Microbiome of the South American Locust (Schistocerca cancellata)

Description

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from their solitarious phase to their gregarious phase where they congregate and begin marching and eventually swarming together. These swarms, often billions strong, can consume the vegetation of enormous swaths of land and can travel hundreds of kilometers in a single day producing a complex threat to food security. To better understand the biology of these important pests we explored the gut microbiome of the South American locust (Schistocerca cancellata). We hypothesized generally that the gut microbiome in this species would be critically important as has been shown in many other species. We extracted and homogenized entire guts from male S. cancellata, and then extracted gut microbiome genomic DNA. Genomic DNA was then confirmed on a gel. The initial extractions were of poor quality for sequencing, but subsequent extractions performed by collaborators during troubleshooting at Southern Illinois University Edwardsville proved more useful and were used for PCR. This resulted in the detections of the following bacterial genera in the gut of S. cancellata: Enterobacter, Enterococcus, Serratia, Pseudomonas, Actinobacter, and Weisella. With this data, we are able to speculate about the physiological roles that they hold within the locust gut generating hypotheses for further testing. Understanding the microbial composition of this species’ gut may help us better understand the locust in general in an effort to more sustainably manage them.

Contributors

Agent

Created

Date Created
  • 2021-05

130272-Thumbnail Image.png

Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (Oedaleus asiaticus)

Description

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown for some polyphenic insects. In other animals, particularly long-distance bird migrants, it is clear that high-quality food is required to prepare animals for a successful migration. We tested the effect of diet quality on the flight behaviour and morphology of the Mongolian locust, Oedaleus asiaticus. Locusts reared at high population density and fed low-N grass (performance-enhancing for this species) had enhanced migratory morphology relative to locusts fed high-N grass. Furthermore, locusts fed synthetic diets with an optimal 1 : 2 protein : carbohydrate ratio flew for longer times than locusts fed diets with lower or higher protein : carbohydrate ratios. In contrast to the hypothesis that performance-degrading food should enhance migration, our results support the more nuanced hypothesis that high-quality diets promote development of migratory characteristics when migration is physiologically challenging.

Contributors

Created

Date Created
  • 2017-06-07

130345-Thumbnail Image.png

Grasshoppers Regulate N: P Stoichiometric Homeostasis by Changing Phosphorus Contents in Their Frass

Description

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.

Contributors

Created

Date Created
  • 2014-08-04

129054-Thumbnail Image.png

Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia

Description

Background
Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria,

Background
Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria, is widely distributed around the world, including on the high-altitude Tibetan Plateau (TP) and the low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau for over 34,000 years and thus probably have evolved superior capacity to cope with hypoxia.
Results
Here we compared the hypoxic responses of TP and NP locusts from morphological, behavioral, and physiological perspectives. We found that TP locusts were more tolerant of extreme hypoxia than NP locusts. To evaluate why TP locusts respond to extreme hypoxia differently from NP locusts, we subjected them to extreme hypoxia and compared their transcriptional responses. We found that the aerobic metabolism was less affected in TP locusts than in NP locusts. RNAi disruption of PDHE1β, an entry gene from glycolysis to TCA cycle, increased the ratio of stupor in TP locusts and decreased the ATP content of TP locusts in hypoxia, confirming that aerobic metabolism is critical for TP locusts to maintain activity in hypoxia.
Conclusions
Our results indicate that TP and NP locusts have undergone divergence in hypoxia tolerance. These findings also indicate that insects can adapt to hypoxic pressure by modulating basic metabolic processes.

Contributors

Agent

Created

Date Created
  • 2013-09-18

Consumer-driven nutrient dynamics in urban environments: the stoichiometry of human diets and waste management

Description

Studies in both terrestrial and aquatic ecosystems have documented the potential importance of consumers on ecosystem-level nutrient dynamics. This is especially true when aggregations of organisms create biogeochemical hotspots through

Studies in both terrestrial and aquatic ecosystems have documented the potential importance of consumers on ecosystem-level nutrient dynamics. This is especially true when aggregations of organisms create biogeochemical hotspots through nutrient consumption, assimilation, and remineralization via excretion and egestion. Here, we focused on aggregations of humans in cities to examine how diet and waste management interact to drive nitrogen- (N) and phosphorus- (P) fluxes into nutrient pollution, inert forms, and nutrient recycling. We constructed six diet patterns (five US-based and one developing nation) to examine N- and P-consumption and excretion, and explored their implications for human health. Next, we constructed six waste-management patterns (three US and three for developing nations) to model how decisions at household and city scales determine the eventual fates of N and P. When compared to the US Recommended Daily Intake, all US diet patterns exceeded N and P requirements. Other than the “enriched CO[subscript 2] environment scenario” diet, the typical US omnivore had the greatest excess (37% N and 62% P). Notably, P from food additives could account for all of the excess P found in US omnivore and vegetarian diets. Across all waste-management approaches, a greater proportion of P was stored or recycled (0 to > 100% more P than N) and a greater proportion of N was released as effluent (20 to > 100% more N than P) resulting in pollution enriched with N and a recycling stream enriched with P. In developing nations, 60% of N and 50% of P from excreta entered the environment as pollution because of a lack of sanitation infrastructure. Our study demonstrates a novel addition to modeling sustainable scenarios for urban N- and P-budgets by linking human diets and waste management through socio-ecological systems.

Contributors

Created

Date Created
  • 2015-07-01

157423-Thumbnail Image.png

Effects of Water Holding Capacity and Precipitation on Above Ground Net Primary Production

Description

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.

Contributors

Agent

Created

Date Created
  • 2019