Matching Items (71)
Filtering by

Clear all filters

168484-Thumbnail Image.png
Description
The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with

The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with a user’s range of motion and is actuated with X-oriented flat fabric pneumatic artificial muscles (X-ff-PAM) that contract when pressurized and can generate 190N of force at 200kPa in a 0.3 sec window. For use in gait assistance experiments, X-ff-PAM actuators were placed anterior and posterior to the right hip joint. Extension assistance and flexion assistance was provided in 10-45% and 50-90% of the gait cycle, respectively. Device effectivity was determined through range of motion (ROM) preservation and hip flexor and extensor muscular activity reduction. While the active suit reduced average hip ROM by 4o from the target 30o, all monitored muscles experienced significant reductions in electrical activity. The gluteus maximus and biceps femoris experienced electrical activity reduction of 13.1% and 6.6% respectively and the iliacus and rectus femoris experienced 10.7% and 27.7% respectively. To test suit rehabilitative potential, the actuators were programmed to apply periodic torque perturbations to induce locomotor entrainment. An X-ff-PAM was contracted at the subject’s preferred gait frequency and, in randomly ordered increments of 3%, increased up to 15% beyond. Perturbations located anterior and posterior to the hip were tested separately to assess impact of location on entrainment characteristics. All 11 healthy participants achieved entrainment in all 12 experimental conditions in both suit orientations. Phase-locking consistently occurred around toe-off phase of the gait cycle (GC). Extension perturbations synchronized earlier in the gait cycle (before 60% GC where peak hip extension occurs) than flexion perturbations (just after 60% GC at the transition from full hip extension to hip flexion), across group averaged results. The study demonstrated the suit can significantly extend the basin of entrainment and improve transient response compared to previously reported results and confirms that a single stable attractor exists during gait entrainment to unidirectional hip perturbations.
ContributorsBaye-Wallace, Lily (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021
187348-Thumbnail Image.png
Description
The introduction of assistive/autonomous features in cyber-physical systems, e.g., self-driving vehicles, have paved the way to a relatively new field of system analysis for safety-critical applications, along with the topic of controlling systems with performance and safety guarantees. The different works in this thesis explore and design methodologies that focus

The introduction of assistive/autonomous features in cyber-physical systems, e.g., self-driving vehicles, have paved the way to a relatively new field of system analysis for safety-critical applications, along with the topic of controlling systems with performance and safety guarantees. The different works in this thesis explore and design methodologies that focus on the analysis of nonlinear dynamical systems via set-membership approximations, as well as the development of controllers and estimators that can give worst-case performance guarantees, especially when the sensor data containing information on system outputs is prone to data drops and delays. For analyzing the distinguishability of nonlinear systems, building upon the idea of set membership over-approximation of the nonlinear systems, a novel optimization-based method for multi-model affine abstraction (i.e., simultaneous set-membership over-approximation of multiple models) is designed. This work solves for the existence of set-membership over-approximations of a pair of different nonlinear models such that the different systems can be distinguished/discriminated within a guaranteed detection time under worst-case uncertainties and approximation errors. Specifically, by combining mesh-based affine abstraction methods with T-distinguishability analysis in the literature yields a bilevel bilinear optimization problem, whereby leveraging robust optimization techniques and a suitable change of variables result in a sufficient linear program that can obtain a tractable solution with T-distinguishability guarantees. Moreover, the thesis studied the designs of controllers and estimators with performance guarantees, and specifically, path-dependent feedback controllers and bounded-error estimators for time-varying affine systems are proposed that are subject to delayed observations or missing data. To model the delayed/missing data, two approaches are explored; a fixed-length language and an automaton-based model. Furthermore, controllers/estimators that satisfy the equalized recovery property (a weaker form of invariance with time-varying finite bounds) are synthesized whose feedback gains can be adapted based on the observed path, i.e., the history of observed data patterns up to the latest available time step. Finally, a robust kinodynamic motion planning algorithm is also developed with collision avoidance and probabilistic completeness guarantees. In particular, methods based on fixed and flexible invariant tubes are designed such that the planned motion/trajectories can reject bounded disturbances using noisy observations.
ContributorsHassaan, Syed Muhammad (Author) / Yong, Sze Zheng (Thesis advisor) / Rivera, Daniel (Committee member) / Marvi, Hamidreza (Committee member) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2023
187371-Thumbnail Image.png
Description
Chronic ankle instability (CAI) is caused by the failure to seek treatment and rehabilitation after an acute ankle sprain. Typically, clinical assessment of ankle sprains is done under unloaded conditions, despite the fact that ankle sprains occur during weight loading. Characterization of ankle stiffness, a representation of ankle stability during

Chronic ankle instability (CAI) is caused by the failure to seek treatment and rehabilitation after an acute ankle sprain. Typically, clinical assessment of ankle sprains is done under unloaded conditions, despite the fact that ankle sprains occur during weight loading. Characterization of ankle stiffness, a representation of ankle stability during weight loading, is crucial to quantify ankle stability. Patients with CAI suffer from gait asymmetry, and the descriptions of the asymmetry ratio vary widely throughout the research community. Bilateral ankle stiffness could be a systematic metric to describe the gait asymmetry of CAI patients. Additionally, women generally have higher ankle joint and ligamentous laxity than men, and lower ankle stiffness, which has been thoroughly investigated in previous literature. However, differences in bilateral ankle stiffness between sexes still need to be investigated. Using twin dual-axis robotic platforms, this study investigated the weight loading effect on ankle stiffness in the frontal plane during standing, the bilateral difference in stiffness between the dominant and non-dominant ankle, and the sex difference in bilateral ankle stiffness during standing for varying weight distribution. The group average results of 20 healthy subjects showed that ankle stiffness increased with increasing weight loading on the ankle, which is speculated to be caused by active muscle contraction and changes in passive structure due to weight loading. For the bilateral difference of the group, the statistical analysis showed that there was no significant difference between dominant and non-dominant ankle stiffness for all the weight distributions considered. Although the group average result of the difference in bilateral ankle stiffness was statistically insignificant, individual analysis confirmed the importance of subject-specific investigation of bilateral ankle stiffness, as there were more cases of dominant ankle stiffness being larger than non-dominant ankle stiffness, and the bilateral difference was subject-specific. Investigations into sex differences in bilateral ankle stiffness showed that ankle stiffness in males is significantly greater than in females, even after normalizing the stiffness by weight, which is speculated to be caused by higher joint and ligamentous laxity in females regardless of laterality.
ContributorsPaing, Soe Lin (Author) / Lee, Hyunglae (Thesis advisor) / Berman, Spring (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2023
187389-Thumbnail Image.png
Description
Humans possess the ability to entrain their walking to external pulses occurring atperiods similar to their natural walking cadence. Expanding the basin of entrainment has become a promising option for gait rehabilitation for those affected by hemiparesis. Efforts to expand the basin have utilized either conventional fixed-speed treadmill setups, which require significant

Humans possess the ability to entrain their walking to external pulses occurring atperiods similar to their natural walking cadence. Expanding the basin of entrainment has become a promising option for gait rehabilitation for those affected by hemiparesis. Efforts to expand the basin have utilized either conventional fixed-speed treadmill setups, which require significant alteration to natural walking biomechanics; or overground walking tracks, which are largely impractical. In this study, overground walking was simulated using an actively self-pacing variable speed treadmill, and periodic hip flexion perturbations (≈ 12 Nm) were applied about a subject using a Soft Robotic Hip Exoskeleton. This study investigated the effectiveness of conducting gait entrainment rehabilitation with simulated overground walking to improve the success rate of entrainment at high frequency conditions. This study also investigated whether simulated overground walking can preserve natural biomechanics by examining stride length and normalized propulsive impulse at various conditions. Participants in this study were subjected to four perturbation frequencies, ranging from their naturally preferred gait frequency up to 30% faster. Each subject participated in two days of testing: one day subjects walked on a conventional fixed-speed treadmill, and another day on a variable speed treadmill. Results showed that subjects were more frequently able to entrain to the fastest perturbation frequency on the variable speed treadmill. Results also showed that natural biomechanics were preserved significantly better on the variable speed treadmill across all accelerated perturbation frequencies. This study showed that simulated overground walking can aid in extending the basin of entrainment while preserving natural biomechanics during gait entrainment, which is a promising development for gait rehabilitation. However, a comparative study on neurologically disordered individuals is necessary to quantify the clinical relevance of these findings.
ContributorsCarlson, Evan Han (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamid (Committee member) / Vanderlinden, Alyssa (Committee member) / Arizona State University (Publisher)
Created2023
187613-Thumbnail Image.png
Description
The objective of this thesis is to propose two novel interval observer designs for different classes of linear and hybrid systems with nonlinear observations. The first part of the thesis presents a novel interval observer design for uncertain locally Lipschitz continuous-time (CT) and discrete-time (DT) systems with noisy nonlinear observations.

The objective of this thesis is to propose two novel interval observer designs for different classes of linear and hybrid systems with nonlinear observations. The first part of the thesis presents a novel interval observer design for uncertain locally Lipschitz continuous-time (CT) and discrete-time (DT) systems with noisy nonlinear observations. The observer is constructed using mixed-monotone decompositions, which ensures correctness and positivity without additional constraints/assumptions. The proposed design also involves additional degrees of freedom that may improve the performance of the observer design. The proposed observer is input-to-state stable (ISS) and minimizes the L1-gain of the observer error system with respect to the uncertainties. The observer gains are computed using mixed-integer (linear) programs. The second part of the thesis addresses the problem of designing a novel asymptotically stable interval estimator design for hybrid systems with nonlinear dynamics and observations under the assumption of known jump times. The proposed architecture leverages mixed-monotone decompositions to construct a hybrid interval observer that is guaranteed to frame the true states. Moreover, using common Lyapunov analysis and the positive/cooperative property of the error dynamics, two approaches were proposed for constructing the observer gains to achieve uniform asymptotic stability of the error system based on mixed-integer semidefinite and linear programs, and additional degrees of freedom are incorporated to provide potential advantages similar to coordinate transformations. The effectiveness of both observer designs is demonstrated through simulation examples.
ContributorsDaddala, Sai Praveen Praveen (Author) / Yong, Sze Zheng (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2023
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
171752-Thumbnail Image.png
Description
Building and optimizing a design for deformable media can be extremely costly. However, granular scaling laws enable the ability to predict system velocity and mobility power consumption by testing at a smaller scale in the same environment. The validity of the granular scaling laws for arbitrarily shaped wheels and screws

Building and optimizing a design for deformable media can be extremely costly. However, granular scaling laws enable the ability to predict system velocity and mobility power consumption by testing at a smaller scale in the same environment. The validity of the granular scaling laws for arbitrarily shaped wheels and screws were evaluated in materials like silica sand and BP-1, a lunar simulant. Different wheel geometries, such as non-grousered and straight and bihelically grousered wheels were created and tested using 3D printed technologies. Using the granular scaling laws and the empirical data from initial experiments, power and velocity were predicted for a larger scaled version then experimentally validated on a dynamic mobility platform. Working with granular media has high variability in material properties depending on initial environmental conditions, so particular emphasis was placed on consistency in the testing methodology. Through experiments, these scaling laws have been validated with defined use cases and limitations.
ContributorsMcbryan, Teresa (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022
171766-Thumbnail Image.png
Description
Tubes and pipelines serve as a major component of several units in power plants and oil, gas, and water transmission. These structures undergo extreme conditions, where temperature and pressure vary, leading to corroding of the pipe over time, creating defects in them. A small crack in these tubes can cause

Tubes and pipelines serve as a major component of several units in power plants and oil, gas, and water transmission. These structures undergo extreme conditions, where temperature and pressure vary, leading to corroding of the pipe over time, creating defects in them. A small crack in these tubes can cause major safety problems, so a regular inspection of these tubes is required. Most power plants prefer to use non-destructive testing procedures, such as long-range ultrasonic testing and phased array ultrasonic testing, to name a few. These procedures can be carried out with the help of crawlers that go inside the pipes. One of the main drawbacks of the current robotic tube inspection robots is the lack of maneuverability over complex tubular structures and the inability to traverse non-ferromagnetic pipelines. The main motivation of this project is to create a robotic system that can grab onto ferromagnetic and non-ferromagnetic tubes and move along those, move onto adjacent tubes, and maneuver around flanges and bends in the tube. Furthermore, most of the robots used for inspection rely on roller balls and suction-based components that can allow the robot to hold on to the curved surface of the tube. These techniques fail when the surface is rough or uneven, which has served as an inspiration to look at friction-based solutions. Lizards are known for their agile locomotion, as well as their ability to grab on any surface irrespective of the surface texture. The work presented here is focused on the design and control of a lizard-inspired tube inspection robot that can be used to inspect complex tubular structures made of any material.
ContributorsMasurkar, Nihar Dattaram (Author) / Marvi, Hamidreza (Thesis advisor) / Dehghan-Niri, Ehsan (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022
171857-Thumbnail Image.png
Description
Fine control of standing postural balance is essential for completing various tasks in daily activities, which might be compromised when interacting with dynamically challenging environments (e.g., moving ground). Among various biofeedback to improve postural balance control, vibrotactile feedback has an advantage of providing supplementary information about balance control without disturbing

Fine control of standing postural balance is essential for completing various tasks in daily activities, which might be compromised when interacting with dynamically challenging environments (e.g., moving ground). Among various biofeedback to improve postural balance control, vibrotactile feedback has an advantage of providing supplementary information about balance control without disturbing other core functions (e.g., seeing and hearing). This paper investigated the effectiveness of a waist vibrotactile feedback device to improve postural control during standing balance on a dynamically moving ground simulated by a robotic balance platform. Four vibration motors of the waist device applied vibration feedback in the anterior-posterior and medio-lateral direction based on the 2-dimensional sway angle, measured by an inertia measurement unit. Experimental results with 15 healthy participants demonstrated that the waist vibrotactile feedback is effective in improving postural control, evidenced by improvements in center-of-mass and center-of-pressure stability measures. In addition, this study confirmed the effectiveness of the waist vibrotactile feedback in improving standing balance control even under muscle fatigue induced by lower body exercise. The study further confirmed that the waist feedback is more effective in people with lower baseline balance performance in both normal and fatigue conditions.
ContributorsJo, Kwanghee (Author) / Lee, Hyunglae (Thesis advisor) / Sugar, Thomas (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
171649-Thumbnail Image.png
Description
One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there

One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there has been extensive literature published regarding the efficacy of various recovery and rehabilitation topics, it has been widely acknowledged that certain modalities within the field of ACLR rehabilitation need further high-quality evidence to support their use in clinical practice, such as blood flow restriction (BFR) training. BFR training involves the application of a tourniquet-like cuff to the proximal aspect of a limb prior to exercise; the cuff is inflated so that it occludes venous flow but allows arterial inflow. BFR is usually combined with low-intensity (LI) resistance training, with resistance as low as 20% of one-repetition maximum (1RM). LI-BFR has been used as an emerging clinical modality to combat postoperative atrophy of the quadriceps muscles for those who have undergone ACLR, as these individuals cannot safely tolerate high muscular tension exercise after surgery. Impairments of the quadriceps are the major cause of poor functional status of patients following an otherwise successful ACLR procedure; however, these impairments can be mitigated with preoperative rehabilitation done before surgery. It was hypothesized that the use of a preoperative LI-BFR training protocol could help improve postoperative outcomes following ACLR; primarily, strength and hypertrophy of the quadriceps. When compared with a SHAM control group, subjects who were randomized to a BFR intervention group made greater preoperative strength gains in the quadriceps and recovered quadriceps mass at an earlier timepoint than that of the SHAM group aftersurgery; however, the gains made in strength were not able to be maintained in the 8-week postoperative period. While these results do not support the use of LI-BFR from the short-term perspective after ACLR, follow-up data will be used to investigate trends in re-injury and return to sport rates to evaluate the efficacy of the use of LI-BFR from a long-term perspective.
ContributorsGlattke, Kaycee Elizabeth (Author) / Lockhart, Thurmon (Thesis advisor) / McDaniel, Troy (Committee member) / Banks, Scott (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022