Matching Items (12)
Filtering by

Clear all filters

152807-Thumbnail Image.png
Description
Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance

Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance students' opportunity to construct a meaning for a function's inverse and, out of that meaning, produce ways to define a function's inverse without memorizing some procedure. This paper presents a proposed instructional sequence that promotes reflective abstraction in order to help students develop a process conception of function and further understand the meaning of a function inverse. The instructional sequence was used in a teaching experiment with three subjects and the results are presented here. The evidence presented in this paper supports the claim that the proposed instructional sequence has the potential to help students construct meanings needed for understanding function inverse. The results of this study revealed shifts in the understandings of all three subjects. I conjecture that these shifts were achieved by posing questions that promoted reflective abstraction. The questions and subsequent interactions appeared to result in all three students moving toward a process conception of function.
ContributorsFowler, Bethany (Author) / Carlson, Marilyn (Thesis advisor) / Roh, Kyeong (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2014
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
155950-Thumbnail Image.png
Description
The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with the new technology. Therefore, in order to better understand teaching with technology, we need to take a closer look at the adoption of new technology in a mathematics classroom. Using interviews and classroom observations, I explored perturbations in mathematical classroom practices as an instructor implemented virtual manipulatives as novel didactic objects in rational function instruction. In particular, the instructor used didactic objects that were designed to lay the foundation for developing a conceptual understanding of rational functions through the coordination of relative size of the value of the numerator in terms of the value of the denominator. The results are organized according to a taxonomy that captures leader actions, communication, expectations of technology, roles, timing, student engagement, and mathematical conceptions.
ContributorsPampel, Krysten (Author) / Currin van de Sande, Carla (Thesis advisor) / Thompson, Patrick W (Committee member) / Carlson, Marilyn (Committee member) / Milner, Fabio (Committee member) / Strom, April (Committee member) / Arizona State University (Publisher)
Created2017
157204-Thumbnail Image.png
Description
Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of

Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of copies of the amount b that yield the amount a. Researchers have identified many cognitive obstacles that have inhibited the development of robust meanings for division involving non-whole values, while other researchers have commented on the challenges related to such development. Regarding division with fractions, much research has been devoted to quotitive conceptualizations of division, or on symbolic manipulation of variables. Research and curricular activities have largely avoided the study and development of partitive conceptualizations involving fractions, as well as their connection to the invert-and-multiply algorithm. In this dissertation study, I investigated six middle school mathematics teachers’ meanings related to partitive conceptualizations of division over the positive rational numbers. I also investigated the impact of an intervention that I designed with the intent of advancing one of these teachers’ meanings. My findings suggested that the primary cognitive obstacles were difficulties with maintaining multiple levels of units, weak quantitative meanings for fractional multipliers, and an unawareness of (and confusion due to) the two quantitative conceptualizations of division. As a product of this study, I developed a framework for characterizing robust meanings for division, indicated directions for future research, and shared implications for curriculum and instruction.
ContributorsWeber, Matthew Barrett (Author) / Strom, April D (Thesis advisor) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Tzur, Ron (Committee member) / Arizona State University (Publisher)
Created2019
157227-Thumbnail Image.png
Description
The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution.

I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I worked with Bonnie in an exploratory teaching setting through three sets of activities to see what meanings she would develop for randomness and stochastic process. The final phase consisted of me working with Danielle as she worked through the same activities as Bonnie but this time in teaching experiment setting where I used a series of interventions to test out how Danielle was thinking about stochastic processes.

My analysis shows that students can be aware that the word “random” lives in two worlds, thereby having conflicting meanings. Bonnie’s meaning for randomness evolved over the course of the study from an unproductive meaning centered on the emotions of the characters in the context to a meaning that randomness is the lack of a pattern. Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of stochastic/processes, leading her to engage in pattern-hunting behavior every time she needed to classify a process as stochastic or not. Danielle’s image of a stochastic process was grounded in whether she saw the repetition as being reproducible (process can be repeated, and outcomes are identical to prior time through the process) or replicable (process can be repeated but the outcomes aren’t in the same order as before). Danielle employed a strategy of carrying out several trials of the process, resetting the applet, and then carrying out the process again, making replicability central to her thinking.
ContributorsHatfield, Neil (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Lehrer, Richard (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2019
189254-Thumbnail Image.png
Description
Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how

Authors of calculus texts often include graphs in the text with the intent that the graph depicts relationships described in theorems and formulas. Similarly, graphs are often utilized in classroom lectures and discussions for the same purpose. The author or instructor includes function graphs to represent quantitative relationships and how a pair of quantities vary. Previous research has shown that different students interpret calculus statements differently depending on their meanings of points in the coordinate plane. As a result, students' widely differing interpretations of graphs presented to them. Researchers studying how students understand graphs of continuous functions and coordinate planes have developed many constructs to explain potential aspects of students' thinking about coordinate points, coordinate planes, variation, covariation, and continuous functions. No current research investigates how the different ways of thinking about graphs correlate. In other words, are there some ways of thinking that tend to either occur together or not occur together? In this research, I investigated student's system of meanings to describe how the different ways of understanding coordinate planes, coordinate points, and graphs of functions in the coordinate planes are related in students’ thinking. I determine a relationship between students' understanding of number lines or coordinate planes containing an infinite collection of numbers and their ability to identify a graph representing a dynamic situation. Additionally, I determined a relationship between students reasoning with values (instead of shapes) and their ability to create a graph to represent a dynamic situation.
ContributorsVillatoro, Barbara (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Moore, Kevin (Committee member) / Roh, Kyeong Hah (Committee member) / Draney, Karen (Committee member) / Arizona State University (Publisher)
Created2023
189257-Thumbnail Image.png
Description
The ideas of measurement and measurement comparisons (e.g., fractions, ratios, quotients) are introduced to students in elementary school. However, studies report that students of all ages have difficulty comparing two quantities in terms of their relative size. Students often understand fractions such as 3/7 as part-whole relationships or “three out

The ideas of measurement and measurement comparisons (e.g., fractions, ratios, quotients) are introduced to students in elementary school. However, studies report that students of all ages have difficulty comparing two quantities in terms of their relative size. Students often understand fractions such as 3/7 as part-whole relationships or “three out of seven.” These limited conceptions have been documented to have implications for understanding the quotient as a measure of relative size and when learning other foundational ideas in mathematics (e.g., rate of change). Many scholars have identified students’ ability to conceptualize the relative size of two quantities values as important for learning specific ideas such as constant rate of change, exponential growth, and derivative. However, few researchers have focused on students’ ways of thinking about multiplicatively comparing two quantities’ values as they vary together across select topics in precalculus. Relative size reasoning is a way of thinking one has developed when conceptualizing the comparison of two quantities’ values multiplicatively, as their values vary in tandem. This document reviews literature related to relative size reasoning and presents a conceptual analysis that leverages this research in describing what I mean by a relative size comparison and what it means to engage in relative size reasoning. I further illustrate the role of relative size reasoning in understanding rate of change, multiplicative growth, rational functions, and what a graph’s concavity conveys about how two quantities’ values vary together. This study reports on three beginning calculus students’ ways of thinking as they completed tasks designed to elicit students’ relative size reasoning. The data revealed 4 ways of conceptualizing the idea of quotient and highlights the affordances of conceptualizing a quotient as a measure of the relative size of two quantities’ values. The study also reports data from investigating the validity of a collection of multiple-choice items designed to assess students’ relative size reasoning (RSR) abilities. Analysis of this data provided insights for refining the questions and answer choices for these assessment items.
ContributorsLock, Kayla Ashley (Author) / Carlson, Marilyn (Thesis advisor) / Apkarian, Naneh (Thesis advisor) / Strom, April (Committee member) / Byerley, Cameron (Committee member) / Roh, Kyeong-Hah (Committee member) / Arizona State University (Publisher)
Created2023
189302-Thumbnail Image.png
Description
Over the last several centuries, mathematicians have developed sophisticated symbol systems to represent ideas often imperceptible to their five senses. Although conventional definitions exist for these notations, individuals attribute their personalized meanings to these symbols during their mathematical activities. In some instances, students might (1) attribute a non-normative meaning to

Over the last several centuries, mathematicians have developed sophisticated symbol systems to represent ideas often imperceptible to their five senses. Although conventional definitions exist for these notations, individuals attribute their personalized meanings to these symbols during their mathematical activities. In some instances, students might (1) attribute a non-normative meaning to a conventional symbol or (2) attribute viable meanings for a mathematical topic to a novel symbol. This dissertation aims to investigate the relationships between students’ meanings and personal algebraic expressions in the context of one topic: infinite series convergence. To this end, I report the results of two individual constructivist teaching experiments in which first-time second-semester university calculus students constructed symbols (called personal expressions) to organize their thinking about various topics related to infinite series. My results comprise three distinct sections. First, I describe the intuitive meanings that the two students, Monica and Sylvia, exhibited for infinite series convergence before experiencing formal instruction on the topic. Second, I categorize the meanings these students attributed to their personal expressions for series topics and propose symbol categories corresponding to various instantiations of each meaning. Finally, I describe two situations in which students modified their personal expressions throughout several interviews to either (1) distinguish between examples they initially perceived as similar or (2) modify a previous personal expression to symbolize two ideas they initially perceived as distinct. To conclude, I discuss the research and teaching implications of my explanatory frameworks for students’ symbolization. I also provide an initial theoretical framing of the cognitive mechanisms by which students create, maintain, and modify their personal algebraic representations.
ContributorsEckman, Derek (Author) / Roh, Kyeong Hah (Thesis advisor) / Carlson, Marilyn (Committee member) / Martin, Jason (Committee member) / Spielberg, John (Committee member) / Zazkis, Dov (Committee member) / Arizona State University (Publisher)
Created2023
189214-Thumbnail Image.png
Description
This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the

This study investigated two undergraduate mathematics students’ meanings for derivatives of univariable and multivariable functions when creating linear approximations. Both participants completed multivariable calculus at least two semesters prior to participating in a sequence of four to five exploratory teaching interviews. One purpose of the interviews was to understand the students’ meaning of the idea of rate of change and its role in their understanding ideas of derivative, partial derivative, and directional derivative. A second purpose was to understand and advance the ways in which each student used the idea of rate of change to make linear approximations. My analysis of the data revealed (i) how a student’s understanding of constant rate of change impacted their conception of derivatives, partial derivatives, and directional derivatives, and (ii) how each student used these ideas to make linear approximations. My results revealed that conceptualizing a rate of change as the ratio of two quantities’ values as they vary together was critical for their conceptualizing partial and directional derivatives quantitatively as directional rates of change, and in particular, how they visualized these ideas graphically and constructed symbols to represent the quantities and the relationships between their values. Further, my results revealed the importance of distinguishing between conceptualizing an instantaneous rate of change assuming a constant rate of change over any amount of change in the independent quantity(s) and using this rate of change to generate an approximate amount of change in the value of the dependent quantity. Alonzo initially conceptualized rate of change and derivative as the slantiness of a line that intersected a function’s curve. John also referred to the derivative at a point as the slope of the line tangent to the curve at that point, but he appeared to conceptualize the derivative as a ratio of the changes in two quantities values and imagined (represented graphically) two changes while discussing how to make this ratio more precise and use its value to make linear projections of future function values and amounts of accumulation. John also conceptualized the derivative as the best local, linear approximation for a function.
ContributorsBettersworth, Zachary S (Author) / Carlson, Marilyn (Thesis advisor) / Harel, Guershon (Committee member) / Roh, Kyeong Hah (Committee member) / Thompson, Patrick W. (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2023